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NEURAL NETS FOR SCENE ANALYSIS

CHAPTER 1: INTRODUCTION

This project involved various new optical and digital neural net techniques for scene analysis.
The original neural net concept was the adaptive clustering neural net (ACNN). This is detailed in
Chapter 2. Our original associative processor concept was the Ho-Kashyap neural net. This is
detailed in Chapter 3. Our overview of how neural nets should be used in scene analysis is detailed
in Chapter 4. This also includes an overview of our two new higher order neural nets. Our new
PQNN neural net (which produces higher-order decision surfaces much more efficiently than other
neural nets) is noted in Chapter 5. To achieve high performance on systems with components with
analog accuracy and various nonidealities, we developed a new algorithm and technique discussed
in Chapter 6. We have fabricated our optical laboratory neural net and tested it on several different
case studies and achieved excellent results as noted in Chapter 7.
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CHAPTER 2

Adaptive-clustering optical neural net

David P. Casasent and Etienne Barnard

Pattern recognition techniques (for clustering and linear discriminant function selection) are combined with
neural net methods (that provide an automated method to combine linear discriminant functions into
piecewise linear discriminant surfaces). The resulting adaptive-clustering neural net is suitable for optical
implementation and has certain desirable properties in comparison with other neural nets. Simulation
results are provided.

I. Introduction linear decision surfaces (typically combinations of lin-
Artificial neural networks have received much re- car decision surfaces) for complex multiclass decision

cent attention' - and various optical realizations" . of problems. In fact, many neural net classifiers can
the classic backpropagation neural network6 have been create decision boundaries of arbitrary shape. Our
suggested. Various other optical neural network ar- proposed neural net uses this feature of neural nets in
chitectures have been described7 -9 and some0 -13 have conjunction with initial weights selected using class
been demonstrated conceptually. In this paper we prototypes of clusters-hence we refer to this as an

distinguish between optimization and adaptive learn- adaptive-clustering neural net. It employs a three-

ing neural networks (Sec. II) and we discuss various layered architecture, consisting of input, hidden, and
neural net issues as background. We then advance a output layers with interconnections between the input
new adaptive-clustering neural network (ACNN) in and hidden layers, and between the hidden and output
Sec. II1. Simulation results (performed on a Hecht- layers.
Nielsen Corporation electronic neural network) are A. Neuron Representation Spaces and Dimensionality
then presented (Sec. IV), optical realizations of the
ACNN are discussed (Sec. V) and a summary is ad- To maintain a reasonable number of input (PI) neu-
vanced (Sec. VI). This ACNN uses a new learning rons, we recommend 14.t5 that the neuron representa-
algorithm that combines standard pattern recognition tion space be an appropriate feature space. For image
techniques and neural net concepts to arrive at a new recognition applications, the feature space should not
and quite useful method for neural network synthesis be pixel-based. Other feature spaces have the addi-
that can be achieved optically with attractive results tional advantage that they can be made invariant to
and potential. transformations such as in-plane rotations. This

greatly reduces the number of training images re-
II. Artil'icial Neural Networks quired (i.e., we need not train on transformed versions

We distinguish between two main classes of neural of the objects to be identified). For an M-dimensional
networks'".-k optimization neural nets and adaptive feature space, we use M + I input neurons. The
learning neural nets. Optimization neural nets are additional neuron is used to incorporate the threshold
well understood and their basic theory is well estab- of the hidden layer neurons into the input vector with
lished.1S.17 Associative processors are another class of the state of this neuron set to unity. We now detail
neural networks"6".| -2 that are also well understood. this. A linear discriminant function (LDF) in a fea-
In this paper we consider adaptive learning neural ture space described by feature vectors x can be writ-
nets. The major advantage of a neural net in multi- ten as
class pattern recognition is its ability to compute non- g(K) = W'X ()

where w defines the orientation of the linear decision
boundary and w0 defines its offset or location. When
decisions depend on whether g Z 0, then -w is the

The authors are with Carnegie Mellon University, Department of threshold for the vector-inner product (VIP) w'x. By
Electrical & Computer Engineering, Center for Excellence in Opti- adding an additional 1 to the feature vector x to pro-
cal Daj Prk%'e. sing, Pittsburgh, Pennsylvania 15213-3890. duce y, we include wo in w and we can now write Eq. (1)
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The number of neurons in layer-two (hidden layer) are harder to train (since the Hessian of the criterion
is generally chosen empirically. The number of hid- function with respect to the weights is more ill-condi-
den layer neurons determines the complexity of the tioned when more layers are used) and they generally 4
decision surface. Thus, too few neurons lead to poor introduce more parameters that must be empirically .
classification performance, since a decision surface of selected. Since our neural net also approximates any
complexity sufficient to separate the various classes such decision boundary with three layers, we restrict ,
cannot be created. In most neural nets, the use of too attention to a three-layer neural net.
many hidden neurons is wasteful of resources and The number of output-layer neurons equal the num-
leads to poor generalization. By this we mean that the ber of classes.
decision surfaces are adapted to the peculiarities of the
training set B. Criterion or Error Functions

Lccal minima are a frequent topic of discussion asso- One of the most popular adaptive learning neural
ciated with the number of hidden neurons used. A ne of the ost popula Te le g nera
local minimum is a value of the energy function that is nets is backpropagation (BP). s The problems with
a minimum in a local region, rather than being a global this neural net are that it requires a large training setminimum. In training a backpropagation (BP) neural and long training time, and does not necessarily con-
net,6 the initial state of the hidden layer neurons is verge to the best minimum. Backpropagation is an
random and a given error rate and some energy is example of a neural net which is trained by the minimi-
obtained. When training is repeated with different zation of an error or criterion function. The form of k
initial hidden neuron states, if a different error rate the error function that is minimized for such nets can
results, a local minimum exists. One must vary the training time (e.g., the error
number of hidden neurons and retrain with different function with the best error rate is often the one for ,

initial conditions to empirically determine the number which it is most difficult to reach a minimum error) _V
of hidden neurons. The presence of such variables Standard BP uses an error function based on a sigmoid 'ir

transfer function, while our ACNN uses the percep 4results in long training times for neural nets (as various prvid ,.tron error function in training. We recently provid- :rA.
numbers of layer-two neurons and various starting ed26 a comparison of various error or criterion func
conditions are tried) and it can result in a neural net
that cannot easily be generalized to test data. tions. It was shown that, in general, the use of a

Local minima occur when hidden neurons become perceptron criterion function provides faster conver-
redundant during training (e.g., two of the N hidden gence with comparable error rates Pe to those obtainedreduonsenc dingctriing (eoundare the Ny hde with the more popular sigmoid criterion function.
neurons encode decision boundaries that lie very close The error function choice is not of major concern in the
to one another). If each neuron encoded a distinct performance of BP and our ACNN (it is included to
decision boundary, a lower error rate would result (if note the differences between BP and ACNN and be-
the number of neurons were too few). When the num- cause the criterion function used specifies the type of
ber of distinct hidden neurons is sufficient (equal to or linear classifier employed, as we detail in Sec. 1).
greater than the minimum required), there is no effect
on classification performance, since sufficiently com-
plex decision surfaces can be created despite redun- C. Update Algorithn
dancies in the hidden neurons. Thus, in this case local One reason for the slow convergence of BP is that a
minima are not of concern. Many researchers have gradient-descent (delta rule) algorithm is often used to
found that extensive methods to produce 00% classifi- update the weights in training. Our ACNN uses a
cation on training data are not merited, since test set conjugate-gradient algorithm 7 for weight update
performance often does not reflect such improved since it is faster and does not require the empirical
training set results. Recent work2= on the choice of choice of parameters such as the learning rate and
the number of hidden neurons has concentrated on the momentum." In conjugate-gradient updating, all
case when the training samples are in random positions of the training set data are fed to the system (once) and
in the feature space, which is almost never the case in then the weights are updated. Conversely, with gradi-
real pattern recognition problems. ent descent the weights can be updated after the pre-

Thus, although local minima are not of major con- sentation of each sample in the training set. A batch
cern, an alternate technique to determine the number type of gradient-descent algorithm can also be used,
of hidden neurons with significantly reduced effort is a with weights updated only after all training data have
significant concern. Our new neural net addresses been presented to the system once. Generally, batch
this issue by an organized procedure that selects the gradient descent has the slowest convergence (since
number of hidden neurons based on the number of the parameters cannot be updated and selected at
clusters present in the multiclass data to be separated different stcps). Sequential (nonbatch) gradient de-
(as detailed in Sec. llI). scent generally performs better than batch gradient

The number of neuron layers used is another vari- descent, since it makes more steps toward the solution
able. For BP, it has been shown 4l .25 that any decision (in one presentation of the training set of data). How-
surface can be approximated to arbitrary accuracy ever, selection of its parameter5 is empirical and we
with a three-layer neural net. Four-layer neurl ntzs have found that conjugate-gradient optimization per-
c3n a!so produce any such decision surface, but they forms better. We attribute this to the fact that conju-
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gate-gradient optimization adapts the learning param- P P P
eters in a sensible way, whereas these parameters are 2 3

kept fixed or adapted heuristically for gradient de-
scent-

In difficult multiclass decision problems we have
found conjugate-gradient training to be much more
efficient than gradient descent. With neural net hard-
ware and software (such as the Hecht-Nielsen Corp.
AZP which we use) conjugate-gradient optimization is
very attractive. In our comparisons of BP and the
ACNN we use the same conjugate-gradient algorithm INPUT CLUSTERS CLASS
to update the weights. SEVERAL PER

0. Initial Weights CLASS

Another reason for the long training time for BP is Fig. 1 Adaptive-clustering neural neL
that the initial weights are chosen arbitrarily. In our
ACNN algorithm, the initial weights are set using pat-
tern recognition techniques and then they are refined allows us to use standard clustering and pattern recog-
using neural network techniques. This is a major rea- nition techniques to select the initial PI-P2 weights
son for the improved performance of our ACNN. We (initial LDFs) and new neural net techniques to adapt
have tested BP using initial weights chosen from clus- or refine these weights. We employ a perceptron crite-
tering techniques similar to those used for the initial rion or error function (this defines our LDFs) rather
weights of the ACNN. We founds negligible im- than a signioid error function, since faster convergence
provement in training time and worse performance in with a comparable error rate is obtained.
some cases. We attribute this to the fact that BP can There are no commonly used standard (non-neural
sometimes use hidden neurons in more sophisticated net) techniques to obtain piecewise linear decision sur-
ways than is the case in the hidden layer of our ACNN faces for two- or multiclass problems (except nearest-
and that this cannot be achieved when a preset weight neighbor methods). Because of the importance of
choice is used. neural net techniques in addressing this problem, and

This present section was intended to highlight issues since we use nearest-neighbor techniques in selecting
associated with neural networks and to note differ- our clusters, we briefly review standard multiclass
ences between our algorithm and the more extensively techniques. In a nearest-neighbor classifier, the dis-
tested and analyzed BP algorithm. tance between an input and all training samples is

calculated and the input is assigned to the class of the
Ill. Adaptive Clustering Neural Net (ACNN) Training closest training sample. From tests on all training
Algorithm data in each class, the bounds on each class are deter-

Our three-layer ACNN is shown in Fig. 1. It is mined and one can obtain piecewise linear decision
similar to the standard multilayer perceptron. We surfaces. However, the nearest-neighbor technique is
now detail its design and use for multiclass pattern computationally intensive (requiring calculation of
recognition. The input (Pl) neurons are analog and the distance to all training samples). Conversely,neu-
represent a feature space which can be of low dimen- ral nets have a long training time (which is off-line and
sionality (we add an additional feature which is always of less concern) but their classification times (an on-
kept at unity to adapt the threshold of the hidden line requirement) are shortL In addition, all training
neurons as well). The hidden layer neurons at P2  samples must be stored for a nearest-neighbor system
correspond to clusters in feature space, with several and thus storage requirements can be excessive. Fi-
clusters (neurons) used for each class in a multiclass nally, nearest-neighbor systems do not perform well
application. The PI-P2 weights are used to assign an when the probability-density functions of the classes
input to a cluster. We typically use two to five clusters overlap significantly. The calculation of the K nearest
per class. The layer-two neurons are binary and (in neighbors is useful here (the input is assigned to the
testing) the P2 neuron with the largest input activity class to which the majority of these K samples belong).
fires and denotes the cluster to which the input be- However, the selection of K is empirical.
longs. During training the Pl-P 2 weights adapt as we Two other multiclass techniques are Gaussian and
will detail (we employ a conjugate-gradient algorithm) linear classifiers. Gaussian classifiers assume that the
and thus refine our initial weight estimates. The hid- data in each class are normally distributed and for each
den layer-to-output weights are fixed (all are either class its mean and variance are estimated. To classify
zero or one) and perform the mapping of the P2 clusters an input vector, a posteriori probabilities are calculat-
to one of the classes (with one P., neuron assigned per ed for each class with Bayes' rule, and the input is
class of data). Thus, we initially ,ssign several layer- assigned to the class with the highest probability.
wo cluster neurons to each class and use fixed Pz-P This technique (and all parametric methods) work
Neights to assign cich P- cluster to a fin-! '9ass (output only if the data follow the assumed distribution and
ieuron in I'). This is attractive and new since it this is rarely the case. To produce multiclass decision
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boundaries with LDFs, the mean vector m of each the number of errors produced). We insure that at
class can be calculated and used as an LDF. The VIP least one prototype is chosen from each class. Insur-
of the input with each mc and thresholding denotes the ing that we keep one prototype per class has not been a
class estimate for the input. Criterion functions (error problem in our benchmarks (i.e., if the prototypes are
functions) represent a preferable way to select an LDF ordered by their error rate, we do not find a number of
for each class. One can employ pairwise LDFs (for consecutive prototypes in one class before one from
each LDF, some class i is compared with another class another class occurs). In our initial benchmarks, we
J). These approaches are computationally intensive have not found significant branch points or jumps in
and not attractive for problems with many classes and the error rates of the ordered samples. There is also no
they may lead to decision surfaces that have undefined restriction that the same number of prototypes be
regions (not corresponding to any class), selected from each class (the data will determine this). :7 :

Thus, standard linear discriminant techniques for Considerable flexibility is possible in how the N proto-
multivariate pattern recognition allow us to determine types are selected since training will refine the initial t
suitable linear discriminants, but these are generally choices; therefore, this issue is not of major concern.
not powerful enough for realistic pattern recognition This procedure does not account for the fact that,
applications that require nonlinear decision surfaces. when several samples are not included as prototypes,
In our ACNN, neural net techniques provide refine- performance will be worse than when only one of the '

ments to the linear discriminant weight estimates and samples is omitted. However, the purpose of selecting
automatically combine many linear decision bound- prototypes (or cluster representatives) is only to pro-
aries into piecewise linear decision boundaries. We vide a reasonable or approximate initial selection (the j
now detail the design and update rules for our ACNN. neural net adaptations of these initial choices address I

the global problem).
A. Selection of the Number of Hidden Layer (Cluster) We note that use of a nearest-neighbor technique for
Neurons training is acceptable, but it is not suitable for classifi-

To select the prototypes/exemplars or cluster repre- cation (where on-line real time requirements exist).

sentatives we use two steps. As our prototypes we The combination of our nearest-neighbor prototype

desire the N prototypes in the training set whose re-' selection and ACNN update algorithm will be shown to "

moval cause the most error in a nearest-neighbor clas- require fewer iterations than BP. To quantify the

sification. We assume a large training set (Nr sam- significance of this, we now briefly address the number

ples) for our multiclass problem (so large that simple of operations required to select prototypes and relate it "

clustering techniques cannot produce a suitable set of to the number of operations required in one BP itera-
clusters). We first use standard techniques3° for sam- tion on all NT training samples. For each sample, our
pie-number reduction to obtain a modest number of prototype selection algorithm must calculate the dis-
prototypes NR. This reduced nearest-neighbor clus- tance to all other points in the training set. For all Nr
tering technique divides the NT samples into two samples, the claculation of the distances from all
groups (A and B), where the samples in A classify all points to all points (i.e., the number of distance calcu-
NT samples correctly using a nearest-neighbor tech- lations required for one pass through the Nr training
nique. Initially, all samples are in group B. The samples) is approximately 0.5N2T (we precalculate this
samples in A are used as the prototypes in a nearest- once and use the 0.5 factor since the calculations are
neighbor classifier. Each sample in B is sequentially symmetric). In BP, all NT samples are presented and
presented to the nearest-neighbor classifier. If it is after each sample we must calculate the activities of all
incorrectly classified, itis added to A. This procedure N neurons (N hidden neurons are assumed and the
is repeated until the samples in group A can correctly calculation of the activities of the output neurons is
classify all Nr samples. (Typically around 5% to 30% ignored), i.e., NrN calculations are required. The cal-
of the training samples are still present in NR and this culation times for the operations in the two cases are
is still too large i number of P2 neurons.) equivalent, each is a VIP of dimension equal to that of

Thus, we employ a second step to further reduce the the feature space used (the calculation times for each
number of prototypes (clusters) to an acceptable num- operation are exact for the case of layer-one and layer-
berN. To achieve this, we remove the first prototype, two neurons). If the additional number of BP itera-
use the remaining NR - 1 samples in a nearest-neigh- tions required is I, for our algorithm to be computa-
bor classifier to classify the NT original samples and tionaUy efficient, we require
calculate the number of misclassifications. We then 0.5N. < NTNI. (3)
remove only the second prototype and repeat the
above procedure with the remaining NR - 1 samples. Since NT >> Nour algorithm may not offer a significant
This procedure continues until the removal (separate- advantage in training time (once N is fixed in BP)
ly) of each of the NR prototypes has been tested. If N unless I is very large.
i. prespecified, we keep the N prototypes whose re- In obtaining the result in Eq. (3), we assumed that all
moval would cause the most errors. We can also use NTr samples were used in selecting the N prototypes.
the number of errors obtained by removing each proto- We have found that we need only use approximately
type to select N (i.e., we select N that resu!tv in no more 5N randomly selected samples from the full set of Nr
than a given error rate or for which there is a jump in in our prototype selection (N is the number of proto-
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es or cluster neuron used at P2 and we have always
nd that two to five neurons per class suffice). P
Ls, we employ our algorithm using 5N samples (not
). The inequality to be satisfied is now CLASS 2 CLS

5(5A)2 < Nr(I4)

N < 2Nr.(

further evaluate this, we assume NT - 100N (this is
te typical for distortion-invariant problems to ade- -S S z=VIP

itely represent all distortions). We then find Fig. 2. Perceptron criterion function: S denotes the safety margin

and the solid and dashed curves correspond to classes I and 2,
5 < 2001 (5) respectively.

ich is independent of N. This inequality is always
isfied. As we shall see, BP has always required at
st on the order of I = 100 more iterations of the full xo = (0.5)2p'x. - 0.5p'p + 0.5x'-x. - 0.5x.'X.
ining set than has our ACNN algorithm. In this -O.5x,x. - (ppi - 2pIz + x'-x.)]
e

=f 0.5(11,1l2 - Ip, - xzlp). (9)
5 < 2 X 10

4, 
(6)

algorithm is From Eq. (9) we see that the VIP is related to the
i the computational time savings of our Euclidean distance (denoted by 0 0) between the input
ite signzoificant , o and the prototype pi associated with hidden neuron
['bus, to summarize, in the two steps of our proto- i. The choice of weights in Eq. (7) achieves nearest-
e selection algorithm we use 5N random samples neighbor classification since it ensures, from Eq. (9),

m the full NT set. We select the number of hidden that the hidden neuron closest to x. will have the
irons N to be two to five times the number of classes largest input (since the second term in Eq. (9) is then
!pending on the difficulty of the problem). Sec. IV smallest) and will be most active.
als these choices for two examples.

Initial P1-P2 Weights G. Training (Weight Update) Algorithm

Me now address how we select the initial PI-P 2  We now detail how we, update the initial P1-P2
put-to-hidden layer) weights. We denote the weights to achieve improved piecewise linear decision
ight between input neuron j and hidden neuron i by surfaces. We input each of the full NT set of training

We denote the vector position of prototype i in vectors x.. For each x. we calculate the most active
D-dimensional feature space by pi (i.e., this is the hidden neuron i(c) in the proper class c and the most

ture vector for prototype i) and elementjof itbypij. active one i(l) in any other class (Z). We denote the
can now dscribe the input weights from P to/ 2 as weight vectors for these two layer-two neurons by wi(c)

and wi(e) and their VIPs with the input by wfj(,x 0 and
for j 1.... .D W(,)X. The perceptron error function (criterionp, function) Ep used is shown in Fig. 2. The solid

2 ='o (7) (dashed) curves correspond to the true (false) classes 1
-(1/2) '-" p forj D +1. and 2 cases. The offset S is a safety margin that forcesj.1 training set vectors which are classified correctly by a

e furst D (out of D + 1) elements of each weight small amount (<S) to also contribute to the criterion
,tor from Pi to layer-two neuron i are thus the fea- function. As discussed elsewhere, 26 we chose S = 0.05
e vector pi associated with that prototype. The last (all features were normalized between 0 and 1). The
+ 1) input neuron activity is always 1 and its weight use of S forces the classifier to try to classify all training
hidden layer neuron i is associated with its LDF samples correctly by at least an amount S, improving
eshold. We choose these initial weights since they test set performance (and thus generalization).
ure that the classifier initially implements a near- For each training sample in NT, we add an error
neighbor classifier based on the prototypes, as we (penalty) to Ep. The error added is
v detail. E = 0 ifw '¢,x. > w,',,x. + S
ach hidden neuron i has connections from all D +1 !'
ut neurons and thus has a weight vector wi associat- S+ (W,(i - w,(,)'x°otherwise, (10)
Nith it. For an input x,, the input to neuron i in where the E = 0 case corresponds to the situation when
tr two is the proper layer-two neuron is most active (by an

X,,= p'X - , (8) amount S above the most active false neuron) and
where the other case corresponds to the situation when

,ret he first term is the contribution to the VIP from the false class VIP is larger than the true class VIP, or
first D weights and the last term is the contribution within S of it.
to the additional D + 1 input neuron. We rewrite After all NT training samples have been run through
(8) as the system, we accumulate all of these errors or ener-
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INPUT Fr

P1 P2

Fig. 3. Input P, neuron representation space
(wedge sampled Fourier transform): (a) architec-

(a) (b) ture; (b) P2 sampling.

gies (all are positive or zero). We also accumulate the (or correctly classified but with a margin less than S) in
gradients V..E. From Eq. (10), by taking the deriva- layer-two clusters. We then use V.,E to adapt the
tive with respect to wi, we see that V,.E is zero for all i weights w by the conjugate-gradient algorithm. We
when an input is classified correctly by more than S; then reneat presentation of the training set (a new
otherwise, it equals either x. (if input a should be iteration), calculate the new errors E and V,,E and
classified into the same class as cluster-neuron i) or update the weights accordingly. This procedure re-
-x. (if a is incoirectly classified by cluster neuron s). peats until satisfactory performance on the test set is
Thus, the sum of all the contributions to V,,E equals obtained.
the sum of the ±x. for samples erroneously classified We considered other LDFs (Ho-Kashyap, Fisher,
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Fig. 5. Nonlinear decision boundaries produced
feature 1 for the artificial database.

Fukanaga-Koontz, etc.). However, these LDFs re- IV. Test Results
quire more calculation than does our current algorithm We consider two databases: an artificial set of
to update the weights. Thus, for computational rea- data'5 -2 (to demonstrate the nonlinear surfaces pro-
sons, our present choice (perceptron criterion) is pref- duced using only two features) and a set of three air-
erable. craft with various azimuth and elevation (3-D) distor-

D. Input P, Neuron Representation Space tions present. We refer to these as benchmarks 1 and
In our distortion-invariant multiclass pattern recog- 2.

nition applicaiions, we use a wedge-sampled magni-
tude Fourier transform feature space,31 since this fea- A. Bencharwk 1 Results (Artificial Data)
ture space can easily be produced optically. Figure An artificial set of 383 samples in three classes (181
3(a) shows the standard architecture that produces the in class 1, 97 in class 2 and 105 in class 3) with two
Fourier transform at P2 of the P input 2-D image data. features was generated with samples as shown in Fig. 4.
Figure 3(b) shows the standard wedge-ring detector This problem definitely requires a nonlinear decision
used at P2 . The wedge features provide scale invari- boundary and the results can be shown in the 2-D
ance and the ring features provide in-plane rotation feature space. This is the purpose of this example,
invariance. Our distortion-invariant data will involve since no separate test data exist. The neural net used
different aspect views of several objects (and not in- contained three input neurons (two for the features
plane distortions). Thus, we chose the wedge features plus one for the threshold), six hidden neurons (two
(this provides scale invariance, although we do not per class) and three output neurons (one per class).
include scale distortions in our test data). We obtain All NT samples were used to select the prototypes.
aspect-view invariance by training on various aspect- The first reduced nearest-neighbor clustering pro-
distorted object views. duced thirty-one prototypes (8.1% of the total NT) that
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gave an error rate P, = 0% for all samples. The six From inspection of Fig. 4 one would estimate that a
prototypes whose removal gave the most error were piecewise linear decision surface with at least five
then selected in stage two. straight-line sections would be needed to separate the

After eighty iterations of the full training set, the data adequately and that about ten errors might be
classification rate (defined as the percentage of test expected. Thus, at least five hidden neurons are ex-
samples correctly classified) was constant at 97.1% pected to be needed. In Fig. 4 we see that, with six
with our ACNN algorithm. After 300 iterations the hidden neurons, approximately ten classification er-
BP classification rate was constant at approximately rors are made, pro('ucing the error rate of 97.1%.
the same value (96.3%). (This result is the average Figure 6 compares the classification rate for the two
obtained over ten runs with different random initial neural nets and for a multivariate Gaussian classifier.
weight sets.) The final input layer weights to the six Both neural nets give comparable classification rates
hidden layer neurons correspond to six straight lines (97.1% and 96.3%) after convergence, whereas the
(LDFs) in the feature space. For BP these six lines Gaussian classifier's performance is worse (89.5%) and
would define the decision surface. In the ACNN this by definition does not vary with the number of itera-
is not the case (because of the winner-takes-all action tions of the training set. The speed of learning of the
at P2). The decision-surface lines were determined by ACNN is much faster (convergence in 80 iterations)
successively providing all of the possible feature vec- than for BP (approximate convergence in 300 itera-
tors on a grid of xl - x2 values (for both x and X2 in the tions). From Eq. (4) this represents approximately an
interval [0,11) to the classifier and for each feature additional NTNI = (383)(6)(220) - 505560 VIP calcu-
vector determining the class into which it is classified lations required with BP. The prototype selection
by the neural net. The decision boundaries indicate steps in our ACNN algorithm required approximately
where a transition in classification occurred. The 0.5N2T = (0.5)(383)2 - 73350 VIPs and thus the total
boundaries thus obtained are shown in Fig. 5. They number of calculations and hence training time for our
produce four separate regions of feature space (two ACNN is considerably less than the learning time for
correspond to the same class and the others correspond BP. We reran the prototype selection portion of our
to the other two classes). ACNN algorithm using only 5N = 30sample-s random-
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ly selected from the 383, insuring that we obtain at The images were different azimuth views (with the
least one prototype per class. The decision bound- aircraft viewed from different angles left to right) and
aries produced are shown in Fig. 7. As can be seen, the elevation views (with the aircraft viewed from differ-
decision boundaries are virtually identical; the result- ent angles above or below its center lino' The range of
ing error rates differ by only 0.2% (96.9% classification azimuth angles used covered -85" to +850 and the
was obtained after 100 iterations). This was now elevation angle was varied from 00 to 900 with 50
achieved with only 0.5(30) 2 = 4W VIP, for prototype increments in each angle (the same image results if
selection. negative elevation angles are used). The input neuron

This data set, therefore, indicates that similar per- representation space was a thirty-two element feature
formances can be obtained with BP and ACNN, with space (the thirty-two wedge magnitude Fourier sam-
ACNN training appreciably faster than BP. We have ples). The test set used consisted of 578 orientations
also seen that the time for prototype selection with of each aircraft not present in the training set (these
ACNN can be made negligible by using a reduced were views at internal angles about 2.5* in each direc-
number of learning samples, without affecting per- tion from those in the training set). Figure 8 shows
formance adversely, three distorted versions of each aircraft. The left im -

age is the top-down view with 00 variation in elevation
B. Benchmrk 2 Results (3-0 Distorted Aircraft Data) and azimuth. The central image shows a view from an

As our second data set, we used synthetic distorted azimuth angle of 450 to the left. The right image for
aircraft imagery and our wedge-sampled Fourier fea- each object shows an image with elevation angle of 45 ° .
ture space. The imagery used were three aircraft (F-4, The three-layer ACNN used contained thirty-three
F-104, and DC-10) binarized to 128 X 128 pixels with inpul neurons, nine hidden neurons and three output
each aircraft occupying about the central 100 X 64 neurons (one per class).
pixels. As our training set, we used 630 images of each Figure 9 compares the speed (number of iterations of
aircraft (a total of Nr = 1890 training set samples). the full training set) and classificatior performance for

10June 1990 / Vol 29. No. 17 / APPLIED OPTICS 2511



the two neural nets and the Gaussian classifier. Both
neural nets yield the same classification rate (98.6%)
compared to only 89% for the Gaussian classifier. BP
converges in 350 iterations and our ACNN in fewer
(180) iterations. As with the 2-D data set, a reduced
data set for prototype selection can be employed suc-
cessfully. It was found that with 5N = 45 samples
used for prototype selection, 98.6% classific'ation per-
formance was obtained after 180 iterations. With this
reduced number of samples, the time for prototype
selection is negligible compared with the time for a
single iteration, so that the relative training times are
again determined b, the number of iterations required
for each method. Thus, ACNN requires approximate-
ly 50% of the training time of BP.

V. Optical and Optical/Electronic Realization
Many choices are possible for the role of optics in the

learning and classification stages of our ACNN.
These are now discussed. The feature space (wedge-
sampled magnitude Fourier transform) should be opti-

Fig. 8. Representative images for the three-class 3-D distortion cally calculated (even in learning) since this feature
example (benchmark 2). space is easily produced opticaly 32'3 and since we will
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class 1 (WTA) and

a i (c)
clas (WTA)} X ti w

X N weights VIPs
a (prototypes)

updates Fig. 10. Possible optical architecture for adaptive
learning.

use the optically produced feature space in our on-line update PA as required. Alternatively, we could repeat
classification. The two steps of prototype selection each x. at P, &nd vary the input illumination and the
are best performed electronically, since they are off- PA row accessed and hence control the amount of each
line operations and require manipulation of stored x added to or subtracted from each weight vector at
data and control operations most compatible with digi- PA. The digital control required, the complexity of
tal electronics. The distance calculations required in the system (a modulated light source to control the
the nearest-neighbor calculations can be performed on amount of each x used, access to only one row of PA at
an optical VIP architecture (we now discuss this and a time), the need for N accesses of PA for each ofthe NT
the use of optics in the learning stage). vectors x., and the PA SLM requirements make the

Once the initial Pi-P2 weights have been chosen, the electronic calculation of the updated weight vectors
learning stage can be imp!emented in optics or elec- and the electronic off-line implementation of the
tronics. Figure 10 shows one such architecture. The learning stage preferable (at present). As PA SLM
input sample x. is entered at PI (on LEDs, laser diodes technology matures, it would probably be realistic to
or a 1-D spatial light modulator (SLM)). It is imaged calculate all VIPs optically, determine the new weights
onto the initial set of N weight vectors (for the N electronically, and relo0' these directly into PA after
prototype hidden layer neurons) which are arranged each iteration of the training set. However, at present,
on rows at PA (with the first two to five rows corre- we assume that all learning is electronic (since it is off-
sponding to the prototypes for class 1, the next two to line).
five rows being the prototypes for class 2, etc.). Thus, Once learning has been completed, the Pi-P 2
the rows at PA are the initial weights as given in Eq. (7). weights are fixed and the input-to-hidden layer neu-
The VEPs of x. and all of the wi weightvectorsatPA are rons and weights (the PI-P 2 neuron system) can be
formed on a linear detector array at P2. The PA rows implemented on an optical VIP system (such as Pi-P2
and P2 elements are separated into C groups (the C of Fig. 10) with a fixed mask at PA. The number of P
classes). The maximum VIP element in each class is neurons is modest (the input neuron representation is
deter,nined (simple comparator logic is suffic'ent since a compact feature space), and the number of P2 neu-
the number of prototypes per class is small). This rons is also small (typically less than five times the
provides us with wi(,)x. and wi(t)x. in Eq. (10). Bipo- number of classes). Our ACNN requires a winner-
lar values for wi should be handled by spatial multi- takes-all (WTA) maximum selection of the mostactive
plexing at PA and subtraction of adjacent P2 outputs. P2 neuron. This can be implemented with a WTA
Alternatively, the PA data can be placed on a bias (but neural network or in standard comparison techniques.
this increases dynamic-range requirements). The Since the number of P 2 neurons (N) is small, standard
weights must be updated after each iteration of the electronic WTA techniques are preferable (we quanti-
training set. If PA is a microchannel spatial light fy this below). Since the P2-P3 hidden-to-outputneu-
modulator3 ' (or similar device) that can record positive ron weights are fixed and are all unity or zero, the P2-
and negative data (with a bias on the device), we can P 3 weights simply perform a mapping and can easily be
update the weights by adding and/or subtracting the implemented in electronics. Thus, we implement the
appropriate values for each weight. These updates to input-to-hidden layer neuron weights and calculations
the weights at PA are various combinations of the optically and the hidden layer neuron maximum selec-
training vectors x.. These could be calculated in elec- tion (WTA) and the hidden-to-output neuron map-
tronics, entered sequentially at PI and (with a mecha- ping in electronics. Figure 11 summarizes the learning
rism to activate only selected rows at PA) we could and clacsification stages in block diagram form with
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IPUT ' " O I 1 DAPS PI TO P2 rithm. This results in a new neural net that combines
SAMPLE .SW& SLCT WEIl *MIkEA s ' ^GI standard pattern recognition and neural net tech-

0 zGEj niques to produce piecewise linear decision surfaces

(OPTICAL) from the linear discriminant functions. The input
neurons are analog and of low dimensionality (a fea-

(a) ture space with inherent distortion invariances).
Quantitative data show that the learning time and

INPUT iOOM number of calculations required in our new ACNN is

f E s iTOP3 significantly faster (by a factor of 2 to 4) than the more
s= SS CP3S elsuidB erlnt

well-studiedBPneuralnet. We also found that the
(.MAGE) J JP,. P)JJ use of a conjugate-gradient (rather than gradient de-

Pt TO P2 , scent) update algorithm significantly speeds up BP.
WEI~sM BP and the ACNN will usually not result in similar

-- O A--- --- weights since BP uses neurons for other operations
besides clustering, because BP has no WTA competi-

(b) tion in its hidden layer as in the ACNN and because the
Fig. 11. Block diagram for adaptive-clustering neural net using (a) hidden-to-output weights are different in BP and only
electronics for learning (training) and (b) optics for classification perform mapping in the ACNN. However, the deci-

(on-line). sion boundaries that result are usually very similar
(with the ACNN decision boundaries generally being a
piecewise linear approximation to the more curved

attention to whic operations are performed in optics ones in BP). Thus, the two classifiers employ differ-
attntioo which perons a eent means to similar ends, with the ACNN providing
and which in eleetronics. faster training without the need to select many empiri-

The two WTA electronic techniques possible (inneuron in
classification) are to use an operational amplifier P ACNN is dominant, piecewise linear surfaces result
detector to scan all N outputs at P2 or to employ a and more hidden neurons may be needed. Our intent
parallel digital technique. In the digital technique, is not to compare BP and our CNN, rather we note
the N outputs are AID converted, each pair of P2 the attractive properties of our new neural net Be-
outputs (1 and 2, 3 and 4 etc.) are pairwise compared sides providing a new way to select the hidden neurons,
and the maximum of each pair is obtained. Pairwise our neural net algorithm has only one ad hoe parame-
comparisons of the N12 outputs are then performed our neralinetalorit h nlyo er h ide-andtheprcedreis ontnud fr og2  leel unil ter to be empirically selected (the number of hidden
and the procedure is continued for log2N levels until neurons). Changes in ACNN weights during trainingthe maximum is obtained. For 100 input and hidden prvdinomtnonheaatatcnbofuen

neurons, one matrix-vector multiplication (required provide information on the data that can be of use in
to update the P2 neuron activities) requires about better understanding results and in extending resultstoo update thee P2he neuron actvitss reuie aboute h

10,000 additions and 10,000 multiplications; whereas, to other cases (other neural nets do not have this

maximiam selection requires only about 100 compari- property). For example, in sequential gradient de-
sons.aThustemximum selection requires o ypt ca gi- scent updating algorithms (the delta rule) different
sons. Thus, the maximum selection is typically negli- results occur depending on the order in which the
gible computationally compared with the neuron up- training data are presented and depending on the ran-
date stage, and can be implemented in serial electronic dom initial weights (by comparison, the ACNN pro-
hardware without sacrificing the speed of the system. vides consistent results).
We, thus, implement the WTA operation in electronics
using comparators rather than with a neural net. The
specific electronic WTA technique chosen depends on This work was supported by a contract (DAAH01-
the accuracy and speed required. Since these opera- 89-C-04180) from the Defense Advanced Research
tions are required once for each test input in classifica- Project Agency, monitored by the U.S. Army Missile
tion, the WTA time required is set by the rate at which Command.
new input image data occurs and the rate at which its
features can be calculated.
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CHAPTER 3

Ho-Kashyap optical associative processors

Brian Telfer and David P. Casasent

A Ho-Kashyap (H-K) associative processor (AP) is shown to have a larger storage capacity than the
pseudoinverse and correlation APs and to accurately store linearly dependent key vectors. Prior APs have
not demonstrated good performance on linearly dependent key vectors. The AP is attractive for optical
implementation. A new robust H-K AP is proposed to improve noise performance. These results are
demonstrated both theoretically and by Monte Carlo simulation. The H-K AP is also shown to outperform
the pseudoinverse AP in an aircraft recognition case study. A technique is developed to indicate the least
reliable output vector elements and a new AP error correcting synthesis technique is advanced.

I. Introduction heteroassociative processors (HAPs), in which the
The storage capacity,14 noise performance - 7 and keys and recollections differ, rather than autoassocia-

key vector requirements8 of associative processors tive processors (AAPs), in which the keys are identical
(APs) are of major concern. This paper addresses to their recollections.
these issues using a new AP. It is important to distin- One popular AP, the Hopfield memory, has been
guish between general memory and pattern recogni- shown empirically 2 to have a capacity of M - 0.15N,
tion applications. In a general memory application, where M is the number of keys and N is their dimen-
APs store arbitrary data and it is fair to assume that sion. Theoretically, an asymptotic (N - -) capacity
the keys (input vectors) and recollections (output vec- of M = N/(4 log2N) has been shown for the Hopfield
tors) are drawn from random distributions (these APs memory.? Because of its very low capacity, we do not
are tested with Monte Carlo methods). We define the further consider this or similar correlation APs5

storage capacity of an AP to be the number of key/ (where the memory matrix is calculated by summing
recollection vector pairs that can be nearly perfectly the vector outer product of each key and its recollec-
(99-100%) stored in a general memory application. In tion). The pseudoinverse AP 5 (where the memory
pattern recognition problems, an AP has many key matrix is calculated from the pseudoinverse of the key
vectors (e.g., distorted inputs) associated with the matrix) is preferable because it perfectly stores key/
same recollection vector (a class label) and must gener- recollection vector pairs as long as the keys are linearly
ally operate on shifted and distorted input patterns, independent. This allows up to M = N vector pairs to
A large number of keys are stored to represent the be perfectly stored. The pseudoinverse AP also has
distortions of the different classes. In pattern recog- good recall accuracy when M > N.1 In this paper, we
nition, recall accuracy for a specific use is more impor- discuss how an AP computed by the Ho-Kashyap (H-
tant than storage capacity. K) algorithm9 has better recall accuracy and a larger

We consider APs with bipolar binary recollection capacity than the pseudoinverse memory.4 For gener-
vectors. This case commonly occurs in pattern recog- al memory applications, we show4.0 that the maximum
nition, where the recollection vectors are class labels. storage capacity of the H-K AP is M = 2N, and that it
Our key vectors have analog values taken from arbi- can perfectly store keys that are linearly dependent.
trary data (for the general memory) or a feature space We also modify the H-K AP to improve its noise per-
(for the pattern recognition application). We consider formance. A modified version of the algorithm (an

error correcting H-K AP algorithm) that allows a low
accuracy processor to be used is also advanced. This is
of particular concern when an optical processor is em-

The authors are with Carnegie Mellon University, Department of ployed.
Electrical & Computer Engineering, Center for Excellence in Opti- Other AP work''-16 used the H-K algorithm for com-
cal Data Processing. Pittsburgh, Pennsylvania 15213. puting APs, but limited the number of key vectors to

Received 18 May 1989. be substantially less than their dimensionality. [An
0003-6935/90/081191-12$02.00/0. overdetermined problem was created by adding key/
r 1990 Optical Society of America. recollection vector constraints to map unit vectors
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(with a single 1) to all-zero vectors, in addition to where space bandwidth product is a major concern, the
storing the key vectors.] A major emphasis of this difference in memory matrix size is important. The
paper is that the advantage of the H-K AP over the longer updating times for the pseudoinverse and H-K
pseudoinverse AP occurs when the number of key vec- APs are not a major concern for applications utilizing
tors exceeds their dimensionality and that the H-K AP gated learning, 2° where most time is spent in recall
can handle linearly dependent key vectors (i.e. M > N). mode, and learning is only initiated after a significant
Other H-K AP work also used output thresholding and event has occurred.
feedback in recall mode. We do not consider this for In Sec. II, we review the pseudoinverse AP and es-
high capacity APs (M > N). To use feedback in HAP tablish our notation. Section III advances our H-K
recall requires a bidirectional associative memory algorithms. Optical implementation of these proces-
(BAM). 17 To use the H-K algorithm to synthesize a sors is considered in Sec. IV. Section V gives theoreti-
BAM requires that two separate forward (key - recol- cal and simulation results for the general memory ap-
lection) and reverse (recollection -. key) mappings be plication. A case study of distortion invariant aircraft
computed. This significantly increases the complex- recognition is presented in Sec. VI. In Sec. VII, we
ity of the processor and the amount of storage re- offer a summary and conclusion.
quired, and hence makes the bidirectional processor
less desirable for optical implementation. Also, the II. Pseudoinverse Associative Processor Formulation
BAM capacity is limited by the minimum of N and K, Denoting the keys and recollections as the vectors xk
where N and K are the key and recollection vector (N-dimensional) and yk (K-dimensional), respective-
dimensions.'- When K is small (which is to be expect- ly, where k = 1,... ,M, the vectors Xk and yk form an
ed in an HAP when the recollections are used for associated key/recollection pair (there are M such
decisions or class labelling), the BAM's capacity pairs). We desire a K X N matrix M satisfying
(where the BAM is constructed using the H-K algo-
rithm) will cause the memory's capacity to be less than =  (1)
that for the unidirectional processor we consider. for k = 1,... ,M, where sgn(Mxk) indicates that a sig-

Another approach to associative storage is the direct num function is applied to each vector element (sgn(x)
storage nearest-neighbor (DSNN) AP.18 For bipolar = 1 if x ?: 0 and sgn(x) = -1 otherwise). Defining
binary keys, the memory matrix simply contains the matrices X(N × M) and Y(K X M with the key and
key vectors as its rows. In recall, the output vector recollection vectors as their columns, Eq. (1) can be
resulting from multiplying the memory matrix by the rewritten as
input vector has elements that are the vector inner
products of the input with each key. The largest out- Y = sgn(MX). (2)
put element indicates which key has the smallest Ham- It is useful to distinguish between autoassociative pro-
ming distance to the input. The corresponding recol- cessors (AAPs), in which Y = X, and heteroassociative
lection vector can then be selected as the final output. processors (HAPs). Autoassociative processors are
The Hamming Net 19 operates on the same principles, used for restoring partial or noisy inputs. Our major
The DSNN AP can also be extended to analog keys. concern is HAPs since they are useful for decisions and
The AP then finds the key with the smallest Euclidean pattern recognition. It is well known that the pseu-
distance to the input. The DSNN AP has several doinverse AAP degenerates to the identity matrix
attractive properties. It is trivial to synthesize and to when the rows of X are linearly independent,5 which is
update, and it is guaranteed to output the recollection likely to occur when M > N. Although this is clearly
whose the key is closest to the input, not a useful processor, it does correctly recall exact key

The other APs that we have mentioned (correlation, inputs, and the H-K algorithm cannot improve on it.
pseudoinverse, H-K) are more difficult to update (al- This is another reason why this paper considers only
though the correlation AP is still relatively simple to HAPs.
update). They are also not guaranteed to output the A solution of Eq. (2) is5

recollection whose key is closest to the input, although
they do so for low input noise levels. We believe that M = YX , (3)
the main advantage of these three APs over the DSNN where X+ is the pseudoinverse of X. If the key vectors
AP is that their memory matrices can be smaller.8  are linearly independent, then Eq. (3) is guaranteed to
The DSNN AP memory matrix has MN elements, satisfy Eq. (2) exactly. We find linearly independent
while the other AP memory matrices each have KN key vector requirements to be unrealistic. When the
elements, where K is the recollection vector dimension. key vectors are linearly dependent, the solution in Eq.
Thus, the other APs have fewer matrix elements than (3) is approximate. This is guaranteed to be the case
the DSNN AP when K < M. This condition is true when M > N. Such an approximate solution is useful
when the recollections are class labels and have a low and allows a larger storage capacity (M > N). Only
dimension. These low dimensional labels from an AP limited attention has been given to such cases. .6.7 We
can be used to read out high dimensional recollection will refer to Eq. (3) as an exact pseudoinverse AP
vectors from an addressable memory. In addition, the (when M _5 N and the keys are linearly independent)
H -K AP can store M > N key vectors, and in this case K and as an approximate pseudoinverse AP (when M >
< Af even if K = N. For optical implementations, N).
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To compute the pseudoinverse, we use the singular output recollection element. The pseudoinverse AP
value decomposition (SVD) approach 2' because it can minimizes the squared error, but is not guaranteed to
be used for either linearly independent or dependent give perfect recall even if the K class groupings (one for
keys and because it allows us to improve the AP's noise each output recollection vector element) are all linear-
performance by a method that will now be explained. ly separable. 22 The Ho-Kashyap algorithm iteratively
The conventional pseudoinverse HAP recalls noisy computes an LDF (i.e., one row of M) that will correct-
key vectors poorly when M - N (with much better ly classify two classes if they are linearly separable. 22

performance occurring when M < N and M > N). 6 A If they are not linearly separable, the algorithm will
recent paper 7 explains this phenomenon and shows still converge to a minimum squared error solution,
that to optimize recall accuracy for a particular noise and will indicate that the classes are not linearly sepa-
variance u2, all singular values Ai satisfying rable and which output vector elements may not be

, < Mir (4 correct.

should be set to zero. Then the memory matrix is B. Ho-Kashyap APs
computed by7  The H-K algorithm in a new matrix version for AP

synthesis is noted in Table I. We begin with an esti-
M =mate of M from the pseudoinverse (step 1). The pseu-

where XC is the key matrix X with small singular values doinverse memory is only an estimate because it is only
set to zero. For realistic a values, this method causes an approximate solution for M -> N. We modify Y
only a small decrease in the recall accuracy for exact (step 4) and M (step 1) in successive iterations. If the
key vector inputs when M - N, and significantly im- pseudoinverse is exact (i.e., the keys are linearly inde-
proves recall accuracy when noise is present. The pendent) then no modifications will be made. The H-
method is attractive since it does not alter the pseu- K algorithm improves the pseudoinverse memory
doinverse HAP's performance for M << N and M >> N. when the keys are linearly dependent. In step 2, we
We use this approach in our simulations described in calculate the error matrix E, which gives the errors
Sec. V, which confirm the above statements. We note between the actual and desired outputs. The matrix S
that it is well known 2' that very small singular values in step 3 contains the signs of the Y elements, ® de-
(e.g., 10- 4) should always be set to zero to avoid prob- notes Hadamard (pointwise) multiplication, and the
lems of numerical instability. The method explained subscript n is the iteration index. In step 3, we use S to
above differs from this, in that the threshold for zero- form a modified error matrix E'. This matrix equals E
ing the singular values is given as a function of M and a except that all E elements that differ in sign from the
(as opposed to selecting it arbitrarily) and that the corresponding elements in Y are set to 0. This ensures
singular values set to zero can exceed 10- 4 by orders of that none of the Y elements change sign (we assume
magnitude (e.g., if M = 50 and o = 0.1, the threshold for initial bipolar binary Y values) when E' is added to Y in
M is 0.71). step 4 to produce an updated Y. The signs of Y cannot

be allowed to change sign because the signs determine
IlI. Ho-Kashyap Associative Processors on and off recollection vector elements. Step 5 then

The H-K AP has a larger storage capacity than the returns the algorithm to step 1 where M is updated.
pseudoinverse AP because it requires that the key Once E' = 0, the algorithm has converged (conver-
vectors be unly linearly separable for perfect recall, gence is guaranteed whether the keys are linearly sepa-
rather than linearly independent, as the pseudoinverse rable or not). If a row of E, equals 0 then that row's
AP requires. Since linear separability is a looser re- dichotomy (grouping into two classes) is linearly sepa-
striction than linear independence, the H-K AP in rable; otherwise it is not. In actual application, the
many cases can perfectly store linearly dependent algorithm can also be stopped if M correctly recalls all
keys. Before presenting the H-K algorithm, we first of the key vectors.
describe how linear separability applies to APs. C. Most Reliable Recollection Vector Elements
A. Unear Separability and the H-K Algorithm Since the final E indicates which output elements

Recall that the columns of Y are the recollection give perfect recall for the key vector inputs, the H-K
vectors for the different key vectors. Hence, row i of Y algorithm automatically provides information about
gives the desired values of the ith output element for which output elements are the most reliable. If the
the different key vectors. Each row of the AP matrix,
with its threshold value, forms a linear discriminant
function (LDF) that separates the N-dimensional in- T&WO I. Ho-Iaftap AP Aiodthm
put space with a hyperplane into two classes, those key Step Operation
vectors for which element i of the recollection vector is 1 M" = Y X +

-1 and those for which it is +1. The locations of the 2 E, = MnX - Y,
± I elements in row i of Y denote these two classes for
that row. If these two classes can be separated with a 3 E = S ® [(S En) + IS ® E]
hyperplane, then they are linearly separable and there 4 Yn+1 = Yn + 2pE' , 0 < p < 1
exists an LDF that will give perfect recall for that 5 If En $' 0 go to 1.
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data are linearly separable, E and E' will be all zero P2 P3
(and the new Y and M achieve this linear separation).
If E' is all zero and E is not, at least one row of Y is not
linearly separable (but the resultant M is better than
the approximate pseudoinverse solution, in that it has
a lower squared error). The rows of E and E' with all
zero elements denote the output elements that are K
reliable. This allows us to consider the reliable out-
puts first and then the other elements with a reduced
confidence algorithm.

D. Robust Ho-Kashyap AP
Our basic H-K AP (Table I) uses the exact or ap- x M Y

proximate pseudoinverse AP as an initial solution and Fig. 1. Analog optical matrix-vector multiplier for associative pro-
then refines it. Since the pseudoinverse is used in the cessor recall.
basic Ho-Kashyap algorithm, the resulting memory
will suffer the same recall deficiencies as the pseudoin-
verse memory when M - N. We therefore propose
that X+ in Eq. (5) be used instead of X+ in Table I. We matrix-vector multiplier shown in Fig. 1. The optical
call this the robust H-K AP. This combination of the system is attractive for its high speed parallel comput-
H-K algorithm and setting small eigenvalues to zero is ing power. The system operates as follows. The P
quite new. input plane contains N point modulators with light

Since X+ 5 X+ in all cases, the robust H-K AP is not outputs proportional to x. Each element of x uni-
guaranteed to find a linearly separable solution if one formly illuminates one column of the memory M, a
exists. However, this is not a major problem. We transmittance array of K X N elements at P2, and the
have X o X + only when M - N, when the keys are light leaving P2 is integrated horizontally onto K detec-
likely to be easy to linearly separate. Thus, we are still tors at P3. The detector output is the matrix-vector
likely to be able to find the solution, even though I+ product y = Mx. Passing this through a signum func-
differs slightly from X+. As M grows larger, the keys tion gives the desired final output y = sgn(Mx). The
tend to become harder to linearly separate, but X+  matrix M will be bipolar. We note that a variety of
tends to become identical to X+, which guarantees that techniques have been developed for optically repre-
a linearly separable solution will be found if one exists. senting bipolar data.24-27

These comments are confirmed by the simulations of V. General Memory Ho-Kashyap Associative
Sec. V.B. Since X+ , X+ in some cases, we must also Processos
find the conditions under which the robust algorithm
is guaranteed to converge. We have shown (Appendix We first review theoretical work and then report our
A) that its convergence conditions are identical to simulation results.
those for the original algorithm, that is, 0 < p < 1 in A. Th cal Results
step 4 in Table 1. Classic theoretical results allow us to estimate the

storage capacity of the H-K AP. The results assume
E. Error Correcting Ho-Kashyap AP Algorithm that the M N-dimensional key vectors are in general

We now mention the use of an error correcting H-K position. For a group of vectors to be in general posi-
algorithm 2' that can be used to produce a new error tion, no subset of N vectors can be linearly dependent.
correcting H-K AP algorithm, which does not require Thus, restricting vectors to be in general condition is a
an initial X+. Because of its error correcting nature looser condition than linear independence. There are
and the fact that SVD is not used, we expect it to 2" possible dichotomies of these vectors. Thefraction
tolerate lower accuracy than the first H-K algorithm of these that are linearly separable is' 0.2
(Table I). Hence it appears attractive for optical im- M5N
plementation. The algorithm updates Y and M using f I M 1) N

Y,-Y, + E' (6-(MJ.{ 2 M .( i l1 M > N.

M.+1- M.+ pS 9 EI)TR,(6)
M,= M, + p(S® IE,,I)XTR, When the keys cannot be assumed to be in general

where R can be any positive definite N X N matrix, position, Eq. (7) is an upper bound. We extend Eq. (7)
The simplest choice is R = I. toan associative memory formulation (with K-element

recollection vectors) by finding the fraction of groups
of K dichotomies that are all linearly separable. This

IV. Optical Implementation gives the fraction of all possible Y matrices that can be
The recall operation of the pseudoinverse and H-K correctly recalled in an H-K AP. Our fraction is Eq.

APs can be performed by the standard optical analog (7) raised to the Kth power:

1194 APPLIED OPTICS / Vol. 29, No. 8 / 10 March 1990



o-- -. --I" . " -"

(_!I (0=25.

- z

o I- "o 0

N=5
N=25 - - I

o N=125 0

N=oo -- 1'o I_ - ... 0

II i I I I I I I 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
M/N M/N

(a) (b)
Fig. 2. Fraction of (a) all dichotomies of MN-dimensional vectors that are linearly separable. and (b) all groups of K dichotomies of MN-di-

mensional vectors that are linearly separable.

M5 -N infinite N, but Eq. (8) allows us to estimate the storage
g(M-N.K) 2 Ij - (8) capacity for finite N. For example, for N = 125, we see

2kM M > N. () from Fig. 2(b) that the probability that all rows of Y
-0 designate linearly separable groupings is essentially 1

The asymptotic limit (for K = N) as N - is (modi- for a large storage capacity M 5 1.5N. Even if a row of
fled from Ref. 28) Y does not specify a linearly separable grouping, it is

l _ MIN < 2 still possible for the corresponding output element to
g(MNN) l MIN > 2. (9) be correct much of the time.

Thus, the maximum storage for an H-K AP in a general B. Ho-Kashyap and Pseudoinverse General Memory
memory application (random keys and recollections) is Simulations

M - 2N. (10) We now test random H-K APs for agreement with
the above theory and for comparison to pseudoinverse

This asymptotic limit is not achievable with finite APs. We use N = 50 element key vectors, K = N = 50
length (N) key vectors. If N is increased, M can be element recollection vectors and vary MIN. (This
increased accordingly (at the cost of increased memory general memory uses equal key and recollection vector
size). The value of N can be increased with higher dimensions. If the AP outputs were labels used to
order APs'n -30 or by forming random combinations of read out high dimensional recollection vectors from a
the original key vector elements.Al We do not con- larger second stage standard addressable memory, the
sider these approaches, but our work in increasing the AP outputs would be of dimension K < N and the
AP capacity as a function of N applies to the trans- memory matrix would be smaller.) When MIN > 1,
formed key vectors produced by these methods. the key vectors are automatically linearly dependent.

Figure 2(a) plots Eq. (7) vs MIN. It shows the All key vectors were randomly chosen and uniformly
probability (the fractional amount) that one row of Y distributed over -1 to + 1. Each bipolar binary recol-
specifies a linearly separable grouping of key vectors. lection vector element was chosen randomly to be -1
Figure 2(b) plots Eq. (8) vs MIN for K = N. It shows or+1. For each MIN value, ten X and ten Y matrices
the probability that all K rows of Y specify linearly were generated. Our results are averaged over the ten
separable groupings. As seen, the maximum storage resulting memory matrices for each MIN value tested.
capacity of M = 2N cannot be achieved except with The H-K synthesis algorithm used p = 0.5 and was
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Fig. 3. Recall accuracy vs MIN for exact and noisy key vector inputs using (a) pseudoinierse associative memory and (b) basic Ho-Kashyap

associative memory.

limited to a maximum of 1000 iterations. The algo- = 0.05 for all MIN and a = 0.1 for M _ 1.48N). Al-
rithm was also stopped when the memory perfectly though the pseudoinverse AP performs better at high-
recalled the exact key inputs or when E' - 0. To test er noise levels (a = 0.1 for M >- 1.52N and a = 0.2 forM
each AP, we used the M key vectors with four levels of > N), the recall accuracy is low (<90%) and, thus, this
additive zero-mean Gaussian noise: a = 0.0,0.05,0.1,0.2. difference is not of concern (since neither AP performs
The last three nonzero noise levels correspond to sig- very well for these noise levels). For the specific case
nal-to-noise ratios of 21, 15, and 9 dB, respectively, of M - 1.52N, the H-K AP recall was 0.05 higher than
Since the key vector elements were bounded by -1 and the pseudoinverse AP recall for a = 0.05; the two recall
+ 1, we bounded the noisy inputs to be within the same accuracies were nearly identical for o = 0.1; and both
limits. This limiting only slightly improved the recall recall accuracies were low (<90%) for a = 0.2 when M >
results (less than 1% improvement). The recall accu- N. Thus, neither AP may be suitable for inputs with a
racy (percentage of correct output elements) was com- large amount of noise (a = 0.2) at high storage capaci-
puted for each noise level. Figure 3 shows the results ties (M > N). But, for reasonable noise and perform-
for the standard pseudoinverse AP [Fig. 3(a)] and the ance, the H-K AP is preferable and can be used when
results for our basic H-K AP [Fig. 3(b)], for MIN ratios M> N.
of 0.2, 0.4t 0.6 to 1.6 in 0.04 increments, 1.8 and 2.0. We now consider the use of our robust H-K AP to
These results show improved performance and storage improve noise performance when M - N. For corn-
capacity for the H-K vs the pseudoinverse AP. For parison, we apply the robust algorithm with small ei-
discussion purposes, we consider an AP to be useful if genvalues removed to both the pseudoinverse AP and
its recall accuracy for exact key inputs exceeds 0.999. the H-K AP. We set a = 0.1 for the singular value
The recall accuracy of the pseudoinverse AP exceeds threshold expressed by Eq. (4). The exact value of
0.999 for exact key inputs only up to M - 1.04N, and this threshold is not critical, since our choice for the
degrades for M > 1.04N. The H-K AP exceeds 0.999 threshold also gives good performance for a = 0.05 and
recallforM 1.52Nforinputswithnonoise. Thisisa a, = 0.20. The results are shown in Figs. 4(a) and 4(b)
45% improvement in the capacity of the H-K over the respectively, with MIN varied from 0.6 to 1.6 in 0.04
pseudoinverse AP. Thus, the H-K AP performs sig- increments. As seen, both APs avoid the severe drop
nificantly better than the pseudoinverse AP. Its im- in performance (when M - N) in Fig. 3 for noisy inputs.
provement over the correlation HAP (M - 0.15N) is a For the robust APs with exact key inputs, we obtained:
factor of 10 or 900% better performance. We note that P >_ 99.9% for M < 0.84N for the robust pseudoin-
in all cases, the performance in noise degrades when M verse AP,

N (as expected for APs based on the pseudoinverse). P. _ 99.9% for M _< 1.52N for the robust H-K AP,
For noisy inputs when M > N, the H-K AP performs 80% storage improvement with robust H-K AP over
better than the pseudoinverse AP at low noise levels (a robust pseudoinverse AP.
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The robust pseudoinverse AP performs worse than sets some singular values to zero and the H-K algo-
the standard pseudoinverse AP with no noise, but rithm is used to restore the recall accuracy for noiseless
gives much better recall when noise is present and M - key vectors. The number of H-K iterations required
N. The robust H-K AP performs best for exact key increases with MIN because the keys become more
inputs and inputs with low noise. The differences in difficult to linearly separate.
the robust H-K and pseudoinverse AP performance for We note good agreement between theory and tests.
noisy inputs when M > N are the same as described For both the standard and robust H-K APs, all APs
above for the standard H-K and pseudoinverse APs. tested for MIN 5 1.28 and MIN = 1.44 were linearly
This is expected, since omitting small singular values separable. Of the ten APs tested for each other MIN
only affects results when M N. Hence, the recall value, at least one of each set was not linearly separa-
accuracy curves away from M = N are the same for the ble. With N = K = 50, Eq. (8) predicts that the
robust and standard algorithms. Figure 5 plots the transition from ten linearly separable memories to at
fraction of M recollection vectors that are completely least one linearly nonseparable memory will occur be-
correct for the robust pseudoinverse [Fig. 5(a)] and the tween roughly MIN = 1.34 and MIN = 1.56, with the
robust H-K [Fig. 5(b)] APs vs MIN for different probability that all ten memories are linearly separa-
amounts of noise. Again, the robust H-K AP is prefer- ble being 0.99 at MIN = 1.34 and 0.05 at MIN = 1.56.
able when the recall accuracy is good (above 90%). The experimental transition occurs at the lower end of

In Table II, we show the rank of X (the key matrix the theoretical transition. This is to be expected since
with small eigenvalues set to zero) for N = 50 and for the theoretical transition is an upper bound due to its
various values of M. The entry minjMN) is the mini- general position assumption. The two transitions still
mum of M and N and indicates what the rank of X agree reasonably well. Thus, Eq. (8) allows us to esti-
would be if Xt were of full rank. The original X is full mate capacity of the H-K AP for finite N.
rank for all MIN. By comparing the minIMM and
rank entries, we see when small eigenvalues are omit- VI. Pattern Recognition Ho-Kashyap Associative
ted. For MIN = 0.8, we omit an average of 0.7 eigenva- Processors
lues and for M/N = 1.0, we omit an average of 5.7. For This section presents a comparison of the pseudoin-
MIN 2:1.52, no eigenvalues are set to zero and X = X is verse and Ho-Kashyap APs in a two-class distorted
offullrank. Thus, the robust H-K AP differs from the aircraft pattern recognition problem. We consider
standard H-K AP for 0.76N _ M 5 1.48N. In all cases two classes (Phantom and DC-10) of 128 X 128 pixel
in this region where the standard H-K AP perfectly aircraft imagery. Nominal views of these aircraft are
recalled all exact key inputs, the robust H-K AP also shown in Figs. 6(a) and 6(b). As our key vector
gave perfect recall accuracy. This experimental evi- representation space, we use thirty-two wedge samples
dence confirms the argument of Sec. III.D that the of the Fourier transform (in half of the transform
robust H-K algorithm is highly likely to find a linearly plane). The wedge feature space provides scale in-
separable solution if one exists, variance (when the wedge samples are normalized) and

Table III shows the number of robust H-K iterations shift invariance, and is easily generated optically.32

used for different MIN ratios (with N = 50). For MIN In-plane image rotations cause the wedge samples to
< 0.8, we see that the pseudoinverse is exact (no singu- circularly shift. We consider the case when the air-
lar values are set to zero) since the H-K algorithm does craft is moving and that tracking information provides
not iterate. For MIN 2_ 0.8, the robust pseudoinverse the location of the aircraft's nose. This information

Tablo H. Average Rank of the Modified Key Matrix X for Different /N. with a= 0.1 for the Skngular Value Threshold

M/N 0.60 0.64 0.68 0.72 0.76 0.80 0.84 0.88 0.92 0.96 1.00 1.04 1.08
min{M, N} 1 30 32 34 36 38 40 42 44 46 48 50 50 50

rank 130.0 32.0 34.0 36.0 37.7 39.3 40.6 41.5 42.5 43.4 44.3 45.4 45.5

M/N 1.12 1.16 1.20 1.24 1.28 1.32 1.36 1.40 1.44 1.48 1.52 1.56 1.60
min{M, N) 50 50 50 50 50 501 50 50 50 50 50 50 50

rank 46.6 47.1 48.0 48.3 48.9 [49.1 149.1 49.8 49.9 49.9 50.0 50.0 50.0

Table Ill. Avwaee Number of heratlorn Required by Robul NO-Kasityap Algori rm for DIfmfent I/N

- I 0.60 j 0.64 J 0.68 0.72 ] 0.76 0.80 0.84 j0.88 0.92 0.96 j 1.00 1.04 j 1.08
iterations 0 1 1 2 3 4 5 9 17

./IN 1.12 1.16 1.20 1.24 1.28 1.32 1.3611.40 1.44 1.48 1.52 1.56 1.60I
iterations 14 29 13 25 41 81 188 232 108 310 643 714 880
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Fig. 6. Images used in the air-
craft recognition problem. (a)

(a) (b) Phantom and (b) DC-IO aircraft.
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Fig. 7. Wedge samples for the (a) Phantom and (b)

DC-10 images in Fig. 6.

require the separating hyperplanes to pass through the
allows the wedge samples from an unidentified aircraft origin, as would occur otherwise. This technique is
to be circularly shifted so that they align properly with well known' .-0 - and in APs is equivalent to varying the
the training vectors. Thus, for moving aircraft this thresholds on the output elements."4 The recollection
feature space is rotation (in-plane), scale and shift vectors are of dimension K = 1 with values of + 1 for the
invariant. Thus, we do not test these invariances. Phantom and -1 for the DC-10.
Rather, we consider aircraft with out-of-plane distor- Two training sets were used. The first consists of
tions. Figures 7(a) and 7(b) show the feature vectors 882 key vectors for the two aircraft rotated in pitch and
corresponding to the images in Fig. 6. The positions of roll between ±50* at 5* increments. The second con-
the peaks correspond to the angles of the edges of the sists of 2178 key vectors for the two aircraft rotated in
object and the peak values correspond to the lengths of pitch and roll between :-80* at 50 increments. Thus,
the edges. This interpretation gives the wedge feature we consider APs with
space an intuitive appeal. We augment each of the key N = 33-dimensional key vectors,
vectors with a 1. This increases the dimension of the M = 882 and 2178 key/recollection pairs,
key vector hyperspace from N to N + I and does not K 1 l-dimensional recollection vectors.
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Both cases represent linearly dependent key vectors, 1.5N and 99.7% accuracy with M = 1.6N; nearly 900%
with large capacities M = 25N and M = 65N respec- larger storage capacity than a correlation AP; 40%
tively. An H-K AP was produced using the same larger storage capacity than the pseudoinverse memo-
stopping criteria as in Sec. V. (We did not test the ry; and 90% improved noise performance when M - N.
robust H-K algorithm since the test vector distortions Our pattern recognition case study showed 3-D distor-
are not easily quantified into an equivalent noise a.) won invariance and excellent (>93%) recall accuracy
The first case (M = 882) was found to be a linearly for large M = 25N and M = 65N cases with linearly
separable problem, since the H-K algorithm gave 100% dependent key vectors. We have discussed an optical
correct classification after thirty-two iterations. As architecture for implementing H-K recall. The error-
shown in Table IV, the H-K AP yields perfecL perform- correcting AP algorithm that we propose appears at-
ance on the training set, whereas the pseudoinverse AP tractive for optical AP synthesis because of its expect-
does not. For test data in Table IV, we used 800 ed low dynamic range requirements.
aircraft (not present in the training set) with pitch and
roll varied between ±47.5' at 5' increments (i.e., at Appendix A: Convergence Proof for Robust
least 2.50 different in pitch and roll from the training Ho-Kashyap Algorithm
data). The H-K AP also gives perfect performance for We prove that the robust H-K algorithm converges
these inputs and better performance than the pseu- when 0 < p < 1. Without loss of generality, we consid-
doinverse AP. The second case (M = 2178) represents er the case where K = 1 (i.e., Y and M are row vectors).
a linearly nonseparable problem, as shown in Table V. To simplify notation, let m be an N × 1 column vector
The H-K algorithm was stopped at eighty iterations that equals MT, and b be an M X 1 column vector that
since E' = 0 then. However, E * 0, and thus the equals yT, and let Z = XT, and Z = jT. We also
algorithm indicated that the keys were not linearly multiply all key vectors belonging to the second class
separable. The test data in Table V used 2048 aircraft by - 1. This makes the desired outputs b all positive.
with pitch and roll varied between +77.5* at 50 incre- (Initially, b is all +1 and during the iterations the
ments. We see that the H-K AP gives excellent per- output elements change but remain positive.) The
formance in both cases. robust H-K algorithm is now given by

VII. Summary and Conclusion Step Operation

We have shown that the Ho-Kashyap associative I m, =2+b, (Al)
processor has a larger storage capacity than the pseu- (A2)

doinverse processor and that it can store linearly de-
pendent key vectors more accurately than the pseu- 3 e. = (1/2)(e, + le,), (A3)
doinverse processor. We have detailed a new robust
Ho-Kashyap processor to improve the noise perform- 4 b., 1  b, + 2pe ,, (A4)

anceofthe H-KAP. This new processor allows opera- 5 Ife' 0 0 gotol. (A5)
tion on linearly dependent key vectors, achieves much
better storage (M - 2N for general memory applica- Step 3 sets all negative e elements to 0. The modified
tions), and significantly improves noise performance key matrix 2 is used in the pseudoinverse in Eq. (A 1) to
when M - N. (The last advantage is due to incorpo- improve noise performance when M - N. The un-
rating Murakami and Aibara's technique.,) For N= modified key matrix Z is used to compute the error in
50 element key vectors, we showed: 100% recall accu- Eq. (A2) Lbcause we want all the noiseless keys to be
racy for our Ho-Kashyap general memories for M < correctly recalled.

The proof follows the same steps as in Ref. 22 for the
original H-K algorithm. However, the proof in Ref. 22

Table IV. MisciauKlwcAio Rogult #or Psadoverse am 14-Kasyap requires that M 2_ N and that X be full rank. These
Memres wlth *SO* Tralifig set are valid assumptions for overdetermined PR applica-

% Misclassified tions, but not for the general memory application.

Training Set: Pseudoinverse 0.68 Our proof for the robust algorithm makes no such
assumptions.

11-K A P 0.00 The proof makes use of the facts that Z2 + is symmet-
Test Set: Pseudoinverse 0.25 ric, positive semidefinite and idempotent (i.e., the

H1-K AP 0.00 square of the matrix equals itself). We show these
properties using the SVD2 1 of Z, which is given by Z =
UZVT, where U and V are M X R and N X R matrices
(R is the rank of Z) with orthonormal columns, and Z is

Table V. Ml claelcation Results for Paeudo nveurse ar Ho-Kashyap an R X R diagonal containing the R singular values of Z.
Memoies with *60o Trak*n Sol Note that UrU = VIV = I. The pseudoinverse is

% Misclassified given by Z+ 
= VZ+IJT, where Z+ is a diagonal matrix

Training Set: H-K AP 7.0 containing the reciprocals of the singular values (ex-
s Scept for singular values equal to zero, which remain

Test Set: H-K AP 6.1 zero). The modified Zis given byZ = U2V7, whereZ
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ABSTRACT

We consider the dassification of multiple objects in a scene with distortion and clutter
present. Our opinions on the role for neural nets (NNs) in this application and the
different properties that NNs must have to address this problem are advanced. A
hierarchical/inference approach is suggested using correlation NNs for low-level
operations and new classifier NNs with higher-order decision surfaces for the final
decision NNs. Our concern is NN capacity and performance (in noise). Our capacity
guidelines advanced concern the number of neurons, use of analog neurons, Ho-
Kashyap (HK) NNs, and two new NNs with higher-order decision surfaces. Our noise
performance guidelines advanced concern the number of neuron layers, hidden-layer
neuron encoding, and robust HK NNs.

1, INTRODUCTION

For the demanding problem considered, we feel that even NN solutions should use a
hierarchical/inference approach. The levels in such a system [1] are shown in Figure 1
and discussed briefly in Figure 2. Subsequent sections address the role for NNs in each
level and the different NN properties required in each level (hence our use of a
hierarchical approach, as is used in ATR [2). Extensive use is made of prior work since
much of it does not seem to generally be appreciated, possibly due to the vast quantity of
NN literature. Carnegie Mellon work is emphasized, since we are most familiar with it
and since it has addressed the problem we consider.

2. CORRELATION NNs

These are used for the detection, enhancement and feature extraction levels in Figure
1. The detection NN is the lowest-level processor. It operates on the entire scene and its
function is to locate candidate regions of interest (ROIs). Since this level requires
handling object distortions, multiple objects, and dutter, we do not attempt
discrimination (identification) initially. With multiple objects present, a parallel solution
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requires shift-invariance (SI). With clutter present, a parallel solution requires a large
spatial set of weights (space bandwidth product) and hence a correlator (for processing
gain). Figure 3 shows the standard 2-layer NN with shift invariant Fourier transform
(FT) interconnections. The weights at P2 are applied to every Plneuron in parallel and
the P3 outputs are the weighted sum of the product of the weights and each input region
with a P3 nonlinearity (threshold etc.) applied. This is a NN version of the standard
correlator (Figure 4) and hence we refer to it as a correlation NN. Alternative NNs use
N 1

4 interconnections (there are N1 input P1 neurons) to achieve [3] SI. With N1 = 106

iconic neurons, this is excessive and free space SI Fr interconnections and Fr weights
clearly appear preferable to N1

4 interconnections [4] when SI is required.

2.1 DETECTION NN

We use hit-miss (H-M) weights (filters) or rank-order filter techniques applied to the
input scene and its complement, threshold the two P3 outputs, and intersect the H and M
P3 outputs to achieve detection. Figure 5 shows an example of the detection of 7 input
ROIs with this technique. It handles hot, cold and bimodal objects as seen. The initial
algorithm has been detailed [5], demonstrated [6] and its advanced variations [7]
performed very successfully in a wide range of strong background clutter.

2.2 ENHANCEMENT NN

Prior to attempting classification of the object in each ROI, it is generally advisable to
enhance each ROI. This involves noise removal, filling in holes on the object, edge
enhancement, etc. Since the location of the object in each ROI is not known, enhancement
requires SI and thus we use our correlation NN (Figure 3). Now N1 is smaller (only the
ROI pixels are input to P1). The P2 weights used are now morphologically inspired and
are simple uniform structuring element (SE) filters (disks etc.). The spatial size of each SE
weight function determines the size of the holes filled in on the object and the size of
noise regions omitted. The P3 neuron thresholds used define the operation performed: a
low threshold yields a dilation and a high threshold yields an erosion. The difference
between dilation and erosion images yields an edge enhanced image. Figure 6 shows
examples of these operations. Some similar operations can also be achieved using NN
retina chips [81 etc. Their correlation NN realization and the many operations possible
(besides those shown in Figure 6) are detailed elsewhere [9].

2.3 FEATURE EXTRACTION NN

Prior to classifying an object, features are generally extracted to describe each ROL
Since the location (or even the presence) of an object in each ROI is not known, SI is again
required. We thus prefer to again use the correlation NN (Figure 3) for feature extraction.
In this case, the NN weights at P2 are chosen using computer generated hologram (CGH)
techniques, which can achieve a larger number of different feature spaces at the P3
neuron outputs [10]. Many NNs have been described that can calculate features such as
edges, moments, Hough transforms, etc. However, we see no reason to use such NNs
versus standard correlator or VLSI chips for these purposes. NNs can also conceptually
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SEE>1DETECO IMAGE EXTACION IDENTI1FICAI A SS

MRHLICLMORPHOLOGICAL DISMTORION- CLASSIFIER
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CORRELATION LOW-LEVEL VISION IVARL&MCE NEURAL NE.
(O D ILER) SE CORRELATION REUCE ETC.

(OR I F RS)DI4ENSIONAIM
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FIGURE 1: Hierarchical inference levels of scene analysis.

1) DETECTION
MULTIPLE OBJECTS, SHIFT-INVARIANT WEIGHTS
LOCATE REGIONS OF INTEREST (RO1s)

2) IMAGE PROCESSING (ENHANCEMENT)
REDUCE NOISE, FILL IN HOLES, EDGE DETECTION

3) FEATURE EXTRACTION

4) IDENTIFICATION
DETERMINE CLASS OF OBJECT IN EACH ROI
HIGHER ORDER MORE COMPLEX NN DECISION SURFACES

FIGURE 2- Remarks on levels in Figure 1.

INTERCONNECTIONS * INTERCONNECTIONS Pi L P2  L2 P3

INPUT ICONIC WEIGHTS OUWPUT 2-D STRINIG
NEURONS (2-D) NEURONS

(2-1) SCENE) (DETECTION) INPUT BEIB{FDEiC

PROCESSING FILTER

FIGURE 3: Shift invariant correlation NN. FIGURE 4. Standard correlator (optical).
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(a) Input (b) Output

FIGURE 5: Detection NN example results.

(a) Input (b) Erosion followed by dilation
(Noise removal)

(c) Dilation followed by erosion (d) Edge enhancement

(Fill in holes)

FIGURE 6: Image enhancement NN example.

be used to compute a set of best features (with no a prori choice of the feature space). No
ideal NN for this has yet emerged. Candidate solutions such as the Neocognitron [111
use an excessive number of NN layers and other solutions such as the ART [12) require
complex individual neuron elements (with a parallel array of such elements for each
input pixel).

2.4 UNIFIED MULTIFUNCTIONAL NN

An attractive aspect of our NN approach to the first 3 processing levels noted in
Figure 1 is that the same correlation NN architecture is used with different P1 input
neurons (the full scene or an ROI) and different weights at P2 (H-M, SE, CGH choices).
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3. NN CAPACITY

The dassifier NN we consider is the standard 3-layer NN in Figure 7 (i.e. with one
hidden layer of neurons at P2 ). The notation we use considers Njinput neurons
(features) at P1, N 2 hidden layer neurons at P2 and N 3output neurons at P3 (N 3 is the
number of object classes, although P3 encoding can represent more than N 3 classes). We
denote the number of training set images (vectors) by NT.

PI P 2

SP
3. UME O2AYR

Li 3

*0

00

9NPUT CLUSTERS CLASS
SEVERAL PER

CLASS
FIGURE 7: Basic 3-ayer classification NN considered.

3.1 NUMBER OF LAYERS

A 3-layer NN can produce any decision surface [13,14] and hence is used. The proof
of this requires more N 2 neurons to better approximate higher-order surfaces. The new
higher-order NNs we consider (Section 4) allow higher-order surfaces and exact (not
approximate) higher-order surfaces with few N2 neurons. When noise is considered, one
can show [15] that performance degrades -with more neuron layers since errors
propagate. We also consider only 3-ayer NNs since we have not yet found a good
algorithm (without ad hoc parameters) for training NNs with more than one hidden
layer. If significant training is performed, 4-layer NNs may be able to train out noise
propagation effects. However, 3-layer NNs are dearly preferable if they perform well (as
ours do), as they are more well defined and less ad hoc. Work on mapping decision trees
into NNs [16] is not considered as it leads to many neural layers and often binary
neurons, it scales poorly with increased size and is contrary to parallel and NN concepts.
Decision trees also dassically use one duster per class (while we find that several N 2
neurons per class is preferable).

3.2 ANALOG NEURONS AND WEIGHTS

High capacity requires analog input P, neurons and analog weights from P1 -P2.
Polarization methods [17] to achieve optical bipolar data (in optical NNs) are restricted
to only binary neurons and weights and require hard clipped output neurons. Thus,
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they are not of use. Since image pixels and features are analog, the analog P1 neuron

requirements are essential.

3.3 NUMBER OF INPUr NI NEURONS

As N1 increases, so does capacity. However, numerical stability is now of concern [18]
(i.e. the defined problem is ill conditioned). This also translates into increased required
numeric accuracy in the P1 neurons and the P1 -P2 weights. A larger N1 also requires a
larger training set (NT) and the curse of dimensionality [19] then enters. With many N1
features, some features will be of little use (small variance for the different classes) and
other features will have large variances. Thus, a larger N, is good for capacity, but
introduces considerable practical problems (noise, instability, accuracy requirements, a
large NT, many local minima). Our hierarchical approach relieves these problems but
one should still restrict N 1 (our use of feature space P1 neurons addresses this).
Numerical accuracy requirements dearly increase with N1 (they also increase with N 2 ,
but the affect seems much less).

3.4 NUMBER OF HIDDEN LAYER NEURONS N2

3.4.1 Approaches

No general solution yet exists to this. However, it seems well worthwhile to advance
remarks on various approaches to determining N 2. A number of papers have established
a bound of N 2 = NT - 1, but this assigns one neuron to nearly each of the NT training
image and N 2 is too large to be practical. Other derivations make unrealistic
assumptions not valid for general data that contains distorted images, etc. Neural nets
that perform piecewise linear input-to-output mapping generally use a large N 2 - NT - 1
and thus memorize and perform a desired functional mapping (this is not the problem
addressed in our classifier NNs). Many methods simply increase or decrease N 2 until
adequate performance is obtained. We desire non ad hoc methods and a good initiai N 2
choice (else training time is excessive, optimization is not necessarily obtained and
comparisons are not easily possible). Techniques [20] that select the number of N 2
neurons per class based upon the a priori probability of each class occurring did not
perform well (we attribute this to the fact that the number of N 2 neurons per class should
be based on how disjoint a class is and how similar two classes are). Methods which use
linear algebra [21] and covariance [221 techniques to calculate subspaces etc. cannot be
applied to large N, and NT cases [21,22] and often [211 apply only to binary neurons.
Pruning/removing weights does not [231 always yield reliable results and causes data to
become linearly inseparable; thus we ignore such methods and note that decreasing N 2
is not yet easy and adding additional layers (23] when reducing N 2 causes other
problems.

3.4.2 General N mark

We now advance several obvious (but not quantitative) general remarks on N 2. Small
N 2wiU not allow the problem to be solved. Excessive N 2 results in memorizing the
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training data and generalization (good test data results) does not occur (and local
minima may arise). With N 2 neurons, one has N 2 regions in decision space and can form
a maximum of (N2 )(N 2-1) decision boundaries (lines), one between each N 2 pair. In
practice, the number of decision boundaries is much less as many are not of use (such as
ones between two N 2 neurons in the same class). No clear relationship between N 2 and
the number of classes N3 can generally be obtained. Some insight into how N 2 relates to
decision surfaces [22] exists, but no decision emerges in general. Clearly capacity
increases as N 2 increases and N 2 increases as N1 and N 3 increase. N 2 relates to capacity
and decision surfaces. Our new higher-order decision surface NNs (Section 4) address
this problem. They provide improved PC with fewer N 2 neurons and thus are preferable.
These methods are best seen by attention to linear discriminant functions and how NNs
produce decision surfaces. Section 4 addresses these issues.

3.4.3 Preferable Approach (Prototypes)

The technique we use in the Adaptive Clustering NN (ACNN) [4J to select N, uses
prototypes obtained from the training set. This concept has long been used [24,251 to
extend linear classifiers to piecewise linear ones. The linear vector quantizer [26] (LVQ)
uses the PDF of each class and the data to select N 2. This results in a larger N 2 than in the
ACNN. In our NN, we are concerned with decision surfaces not with modeling data
PDFs (specifically, our concern is with the boundaries between data dusters not the
means of such clusters). We feel it is important to not pick initial prototypes at random or
uniformly distributed (as LVQ does) as this yields larger N 2. We also feel that use of
more than one prototype per class is needed, but these should not be arbitrarily used.
Rather, they should be used when class data is disjoint and discrimination between two
similar classes is needed. This is somewhat related to K-nearest-neighbor (KNN)
classifiers (but our motivation is different and no NN as yet performs KNN - rather
many KNN designs are presented as NNs).

Our clustering technique (4] to select N 2 allows a rapid analysis of the training set
followed by a second selection process to pick the best prototypes (more than one per
class). These are chosen to both represent the data, but primarily to discriminate classes
(i.e. we consider the boundaries between dusters rather than the mean of each cluster).
This choice (rather than random prototypes) and the use of more than one per class
distinguishes our method from others. We use these prototypes to set initial PI-P2
weights and then we adapt them. Our initial weights and adaptation of them differ from
other prototype methods. We include an additional P1 neuron with input I and weights
-0.s5w. As the NN algorithm adapts, this constraint on the added N1 neuron is not
enfdrced (in LVQ it is still enforced). In LVQ this forces decision boundaries to lie on the
perpendicular bisector (midpoint) between prototypes. In the ACNN, the decision
surface need not lie at the midpoint. Thus, the ACNN yields more flexibility and better
Pr results with fewer N2 neurons.

3.4.4 Prototype Extensions

Care must be taken to not select N 2 too large. We generally achieve a correct
classification of only PC - 50% with the initial N2 prototypes. If a small N 2 yields high
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PC, then a NN may not be needed. However, test results may be poor with this N 2 choice.
One can check test set performance every few hundred adaptations to verify this and
lower N 2 and restart if needed. If N 2 is too small, the NN adaptations provide this
information and we then increase N 2. To remove dependence on the order in which the
training data is presented, we train in batch mode. We avoid outliers by our N 2 selection.
If the input image training data contains many artifacts, it is essential to not overtrain in
NN adaptations. If noise is present in the training data, then distributions can help avoid
noise effects. Training on noisy data is now needed. Use of PDFs can be of use here, but
proper selection of N 2 yields similar results with a preferable algorithm. In general, one
should not add additional N, neurons to handle several training images that are a small
percentage of a class or of NT

With a good initial N2 estimate (as above), we can easily increase N 2. The new
N 2neuron added would be one to handle the class or discrimination between classes
needing assistance. Our clustering provides data on the next best such prototype. Our
N 2 selection method is preferable to N 2 choices based on the PDF of each class, since we
consider discriminating classes not modeling of a class. (i.e. attention to class boundaries
not class means) and we can far more easily choose a new N 2 neuron and its weights.
The new prototype sets these weights and they are not random as others [27] use; all
other prior weights are kept unchanged. We know, from the NN results, the classes
needing help and from clustering we know the prototypes to add.

3.5 HO-KASHYAP (HK) NNs

For the best NN storage, we can and have [28,29] quantified the best algorithm to
select the Pl-P2 weights. For inputs in general position, this is the HK NN algorithm. It
handles dependent inputs and yields storage of N 3 = 2N1 classes. This is theoretically the
maximum (using WTA P2neurons). We have shown [28] that the best results with input
noise occur for the robust HK algorithm. We have also shown that this yields adequate
analog input neuron accuracy and Pj-P2 weights when limited analog accuracy is
present. This is relevant to optical and analog VLSI NNs. The noise control parameter

sy., in the HK algorithm is selected to optimize such noise conditions and accuracy
liritations. We found that L-max P2 neuron encoding yields the best PC in noise etc.
These results do not seem to be widely known. Our recent [30] results show that with
this algorithm we can also train out internal NN accuracy and non-ideal device effects.
We have consistently achieved better PC results with this algorithm than with an infinite
accuracy NN quantized (after the fact) to lower input and weight accuracy.

3.6 PERFORMANCE

The performance we consider is the percent correct classification PC of the input data.
To be meaningful, one must obtain PC > 90-95% (50-70% performance is not of general
uJ) and this must be obtained with input noise and non-training test data with N 3 > N1
storage. It is also crucial to be able to modify the same NN to maximize PC and/or
minimize Pe (probability of error). We will show how this is possible (Section 4). To
improve PC and Pe performance, higher-order decision surfaces are needed. Section 4
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addresses new NNs to achieve this (we achieve exact, not approximate, surfaces without
the need for large N 2 ). Another issue of concern in NNs is training time. Our use of
conjugate gradient methods 141 is much faster (by a factor of 100 to 1000) than standard
gradient descent or delta rule neuron update algorithms. This result does not seem to be
widely known.

4. NN DECISION SURFACES

4.1 PIECEWISE LINEAR DECISION SURFACES

We produce piecewise linear discriminant surfaces by using initial P1 -P2 weights that
are linear discriminant functions (LDFs) set by N 2 exemplars and using NN techniques
to adapt and combine these. Figure 8 shows [41 an example for N1 = 2 input neurons and
N 3 = 3 classes using N 2 = 6 hidden layer neurons. As seen, the 3 classes of data are
separated and nonlinear surfaces are required to achieve this. We include an additional
input N1 neuron whose input is I and whose weights are related to the sum of the
squares of the other weights. This allows the threshold for each P2 neuron to be
separately adapted. This allows each line in Figure 8 to be shifted (i.e. it need not pass
through the origin) and this (together with our non ad hoc N 2 selection) avoids local
minima. This also insures nearest neighbor convergence (the closest P2 prototype neuron
is the most active one). We note that a nonlinearity at neuron layer P 2 is essential
otherwise a linear NN results, which is merely a standard pattern recognition LDF and
not a true NN. We now discuss two other techniques using only 1 or 2 additional input
neurons that allow higher-order decision surfaces. These methods are preferable to
others that use an excessive number of interconnections N 1

4 to provide higher-order
weights.
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FIGURE 8: Piecewise nonlinear decision surfaces.

4.2 PIECEWISE HYPERSPHERICAL NN [311

This concept is best shown for the case of N1 ' =2 two input neurons with an input
described by kl= xx 2lT We add 2 neurons and use N1 = 4 neurons

9



[(x + X21 and we denote the weights to hidden layer neuron n by n r
[wlw 2 w3 w4. The decision boundary for each P2 neuron is __n = 0 or
w1 + w2 (I + x2) + w 3x1 + w 4x2 = 0. As seen this describes a circle. It also describes a line (if
W2 = 0). If N 1' > 3, it is a hypersphere. Each P2 neuron can now describe a hypersphere
and the decision surfaces are piecewise hyperspheres. To design this NN, we add several
N 2 neurons per class (as needed) to separate one class from the others. To use this neural
net, we simply look at the signs of the P2 neurons. If each neuron is > 0 (< 0), the sign
denotes if the corresponding input is inside (outside) the sphere for that N 2 neuron. Note
that each hypersphere is easily designed in the new N1 space as an LDF but when used
in the original N 1' space is a hypersphere.

Figure 9 shows an example of the decision surfaces produced. We consider 3 classes
of data, N 1 = 4 neurons and N 2 = 6 hidden layer neurons. This NN produces N 2 = 6
circles (C1-C3 for class 1 etc) that define 12 regions of space (R1-R3 for class 1, etc., and
RI0-R12 in which no test data lies). The signs of the N 2 = 6 neurons specify the location of
an input in R1-R12 as inside/outside each hypersphere. Figure 10 shows the 3 class
boundaries defined by piecewise hyperspheres. Note that an input lying in R10-R12 can
be assigned no decision or classified as a reject class. If a WTA is used at P2, then hard
decisions (no reject class) result and the decision boundaries in Figure 11 occur (with no
reject class). These Figure 11 surfaces yield much better PC and the surfaces in Figure 10
yield much better Pe as we will show (Section 4.4).

- 10 R4

C1

6 
2 

6 

2

R11 R6 CLS ly

C44

2

060

0-2

FIGURE 9 Twelve regions R defined FIGURE 10: Three cass (and reject cass)
by 3 circles in the hyperspherical NN. decision regions from Figure 9.
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4.3 PIECEWISE HYPERQUADRATIC NN [321

This provides even more flexibility in the decision surfaces produced and allows
better PC and P. This uses one additional input neuron ! = [i x, x2j , complex-valued
weights Vj = wq+Jvii (these are easily produced optically) and nonlinear intensity
detection at P2 (as optics provides). For N1 = 3 input neurons and only N 2 = 2 hidden
layer neurons, the N 2 = 2 outputs are

flW= f'11 ir" 12X2 + iV13 112

f2( = IiXi+ 22 %2 " 23 11'

and the decision surface produced, fl(x = f2 (-), is

axI + bx2 + cxIx2 + dx1 + ex2 + f = 0

As seen, each pair of P2 neurons in this NN can produce any quadratic surface
required. A line results (if a = b = c = 0), a circle or an ellipse (a * b) results (if c = d = e =
0), etc. These surfaces are exact (not approximate as in BP etc.). As before, they are easily
calculated as LDFs in the new space and are hyperquadratic (if N, > 2) in the original
spa (in which they are used). Figure 12 shows some of the various surfaces possible
(the NN algorithm and the data determine the complexity required in each surface).

4.4 INITIAL RESULTS

We show results for a real multiclass identification problem with severe distortions
present We consider 3 dasses of aircraft with several (±800) pitch and roll distortions.
Figure 13 shows several distorted inputs for one object dass (DC1O). We used N, = 34
neurons (32 wedge Fourier samples and 2 additional neurons) and N 2 = 24 hidden layer
neurons. The decision surfaces produced were piecewise nonlinear combinations of 24
different hyperspheres (N2 = 24). The training set used consisted of 3267 distorted
inputs. The test set was 3072 other distorted inputs not present in the training set. The
test results (Table 1) are excellent. They show the flexibility of the NN to optimize PC or
Pe for a given problem. If we desire large PC, we use maximum selection (WTA neuro'ns)
and achieve PC = 98.9%. If we desire low Pe, we use thresholded ( Z 0) neurons and
achieve Pe = 0.4%. These results are most impressive considering the severe distortions
present and the few N1 and N 2 neurons used.

11
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FIGURE 12: Decision surfaces produced on the hyperquadratic NN.

THRESHOLD MAX SELECTION

PC(%) Reject (%) Pe PC% Pe

Training Set 93.9 5.7 0.4 98.9 1.1

Test Set 92.5 6.8 0.7 98.1 1.9

Table 1: Test results of the hyperspherical NNs for high PC (max selection WTA
neurons) and low Pe (thresholded ( < 0) neurons.
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For completeness, we review some of our HK NN results [281. The storage N 3 /N 1 =
(number of classes)/(number of input neurons) for which PC > 95% can be quantified for
various associative processors. The Hopfield NN (using a correlation matrix) yields poor
N 3 = 0.12N 1 storage (N3 << NI), the pseudoinverse solution (using standard linear
algebra not NNs) is much better (N 3 = 1.04N1 or N 3 - N1) and the HK NN is best (N 3 =
1.52N1 ). When input noise is present (on = 0.1), all NNs degrade. We ignore the Hopfield
NN since its performance is too poor (and no variations of it can sufficiently improve
results). For PC > 95%, the standard HK NN can now only store N 3 = 0.75N 1 (this is still
better than the linear algebra pseudoinverse solution), while the robust HK NN is better
(N 3 = 0.8N 1). However, better results (equal to the noise free ones) with N 3 > N 1 are
obtained with L-max (L = 2) encoding where N 3 = 1.5N1, (no loss) is obtained. Our
analog accuracy tests are also most impressive and show that analog accuracy NNs can
achieve better performance than infinite accuracy NNs when trained on limited accuracy
data using the robust HK NN. In the HK NN synthesis, we now use Cyn = 2 "B/12 1/2 for a
B-bit accuracy NN. With infinite accuracy, we obtained PC = 82.3% and the same
performance when the inputs etc. to this NN were quantized to 8 bits. However, our
robust HK NN with (Ysy n and with training on 8 bit data yielded much better (90.6%)
results.

TEST RESULTS
TEST SET I = ±500 DISTORTIONS (NT = 882)
TEST SET 2= +600 DISTORTIONS (NT = 1250)

NEURAL TEST-SET I TEST-SET 2
NET

USED TRAIN TEST TRAIN TEST

STD HK 93.2 92.3 82.3 88.5

ROBUST IIK 95.1 95.4 90.6 91.2

Table 2: HK NN tests.

Very significant multiclass (3 different aircraft) recognition with severely distorted
inputs (±500 and ±600 distortions in pitch and roll) were obtained. The NN used N 1 = 33
input neurons and only N 2 = N 3 = 2 neurons. Table 2 shows the test results obtained. As
seen, the robust HK NN provided 2-8% better results. These very impressive results are
highlighted in Table 3.

3-D DISTORTION-INVARIANT MULTICLASS IDENTIFICATION
33 INPUT NEURONS, 2 HIDDEN LAYER NEURONS
RECOGNIZE PC > 95% OF OVER N 3= 2000 I > 70N 1

IN NOISE (a = 0.1) WITH 6 BIT (1%) ACCURACY NN

Table 3: Very impressive accuracy and noise Table 2 results summarized.
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CHAPTER 5

A Iliccewise Quadratic Neural Network for Pattern Classification

Sanjay Natarajan and )avid Casasent

Center for Excellence in Optical Data Processing

Carnegie Mellon University, ECE Department
Pittsburgh, PA 15213

Abstract

A neural network pattern classifier is presented. Its decision boundaries are formed
from segments of conic sections which allows it to achieve improved performance over
piecewise linear neural network classifiers, such as our earlier adaptive clustering neural
network (ACNN). We discuss an optical realization that uses complex-valued weights, op-
tical intensity detectors, and an additional input neuron to achieve piecewise conic decision
surfaces (rather than the piecewise linear surfaces that the ACNN produces). .

1 Introduction
Neural networks (NNs) have the ability to produce arbitrarily complex decision boundaries

[1] in an organized and efficient manner. This makes them very attractive for difficult multiclass
classification problems. In this paper, we extend our earlier ACNN algorithm [2] (which
provided piecewise linear discriminant surfaces) to more complex piecewise quadratic decision
surfaces (thereby improving recognition percentage P,).

The ACNN [2] has several attractive properties. For example, it requires few ad hoc
parameters to be selected. It uses pattern recognition and linear discuiminant function (LDF)
techniques to select initial weights. It then uses neural network optimization techniques to
refine the initial weights to produce combinations of LDFs, forming piecewise linear decision
surfaces, and it converges much faster than the standard benchmark, the backpropagation
training algorithm. We now improve upon the ACNN with the piecewise quadratic neural
network (PQNN).

Many researchers have noted the parallelism and interconnection advantages of optical NNs.
We address many new and practical issues associated with optical architectures. We employ
a feature space neuron representation space to utilize a reduced number of input neurons.
Optical NNs [3,4] can conceptually implement the multilayer perceptron [5] neural network
architecture (which can produce complex decision surfaces), but these require advanced optical
materials and devices. We consider an optical implementation of the PQNN in which the use of
an extra input neuron, complex-valued weights, and intensity detectors provides piecewise conic
surfaces. We use multilevel phase error diffusion [6] to produce high accuracy complex-valued - a
interconnection weight. The use of complex-valued weights is easily possible in optics but has
not been used in optical NNs. Most optical NNs also do not use the intensity (magnitude
squared) nature of optical detectors for their nonlinearity advantages. The resultant PQNN
thus makes use of specific advantages of optics. Because of the complex-valued weights used
in the PQNN, it is directly suited for an optical implementation.
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2 Architecture
Fig. I shows the basic tlhree layer NN architecture used. The N1 = A' + I input ') neurons

are analog (the ability to handle analog data directly is another attractive feature of an optical
or analog VLSI NN). The first N neurons at P, are a feature space descriptioll of the multicla-s

input data to be classified. The input to the additional (N+I)-th neuron is always equal to

unity. This neuron allows the NN to adjust the center of each hyperquadratic discrimninant

function. Our feature space inputs are generally unipolar. If other bipolar input representation

spaces are used, we use an input P1 neuron nonlinearity to produce unipolar input neurons

I + tanh(ai)

2

where the monotonic sigmoid nonlinearity maintains the ordering of the feature space data-

The input-to-hidden layer (Pl-to-P) weights are complex-valued. A winner take all (WTA)

operation is applied to the N 2 hidden layer neuron outputs. The P2 neurons are intensity

sensitive with outputs

f_ = Z1 -(Wij + jVlij)Xj1 2 , (2)

where j denotes the input P neuron index, i is the P2 hidden layer neuron index, and wii +jvij

are the complex-valued P1 -to-P2 weights. We determine a number of prototypes from the

training set of data and from these determine the number of hidden layer neurons to be used.

From the locations of the prototypes (in our feature space), we select initial quadratic decision

boundaries (by looking at sets of prototypes). These boundaries define initial complex-valued
P1-to-P2 weights and hence inital probability density dusters (in feature space) for each P2

neuron. These initial weights are then adapted in our NN training algorithm (Section 4).
When training is complete, classification is performed on the test data. In testing, the most
active P2 neuron denotes the duster to which the input P data to be classified belongs (we

allow more than one P2 duster or prototype per class). The P2 outputs are then mapped with

binary weights to the C output P3 neurons (one per class, where there are C classes in our

multidass problem).

3 Two Dimensional Quadratic Surfaces
To show that this architecture produces quadratic decision surfaces, we consider the sim-

plified NN architecture of Fig. 2. This shows a two class problem (two output P3 neurons)
with two hidden layer P2 neurons and a two dimensional feature space (2 + 1 = 3 input Pi

neurons). The notation used is shown in Fig. 2. The Pl-to-P2 weights are complex-valued and
are denoted by

sii = wij + jv, (3)

wbere we constrain jtbiill _< 1.0. Practical optical weights must satisfy this constraint as they

are passive, This requirement on the weights can be achieved without loss of generality by
calculating the optimal weights for classification and then applying this constraint (as a scale
factor). The outputs from the two hidden layer neurons, denoted by fi (I) and f2(1), where X
denotes the input P, neuron values, are

A(A) = J11', + tOi2Z2 + 61311' (4)
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Figure 1: Piecewise Quadratic Neural Network Figure 2: 2-class, 2-feature PQNN'

f2(X) = Ijt02 + t)2272 + l3112 (5)

Rewriting the complex-valued weight ioi, as in (3), the hidden layer neuron outputs become f

=(w?) + 22) + 2 + v" 2) + 2z 1X2(W11W12 + VII V2) +
2Xi(Wniiw 3 + vuV3) + 2X2(012W13 + V12113) + (W2?3 + 13 (6)

f2(_X) -- z2(u 1 " + ) 4(+ "-22) + 2zIz 2 (0 21 U22 + tv21v22) + A
2.T(w 2jw23 + 21123) + 2Z2(22W23 + 12212) + (4 + ,h) (7)

To describe the discriminant surface (discriminant function) between classes 1 and 2, we equate
fi(z) and f2(Z) and obtain

2 1 2 1 2 + VI~2 _ W22-v~~

2z1 (W11 W1 3 + Vl1lVl3 - " 1 1W23 - v2 1 V23) +

2X2 (W1 2W1 3 + 12V13 - U12 2 tW2 3 - V2 2 02 3 ) +

(,W3 13 2-3- (8)

The general form for the decision surfaces in (8) is

a +b+czix2 +dz+ez 2 +f =0 (9)

With different values for the ab,c,d,e, and f coefficients, different surfaces can be produced.
For example, if c = d = e = 0 and a = b, we obtain a circle with radius VI/. If c = d = e = 0
and a i b, we obtain an ellipse; if a = b = c = 0, we obtain a straight line, given by
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Figure 3: Possible decision surfaces for the two clauss, two-feature problem

zi = -(e/d)X 2 + (f/d). Similarly, we can select the C(ollicients to produce a parabolic or

hyperbolic surface.

As Eqs. 8 and 9 show, we can produce any general secomad order discriminant surface through
various choices of the interconnection weights. When more t han 2 features used, these become

multidimensional surfaces and decision surfaces become Pi-'vewise hyperquadratic surfaces. If
a given problem only requires a hyperplane, the weigit. asitomatically accomodate this (by
choosing the appropriate real and imaginary parts of thv w 'ights to be zero). Therefore this

architecture automatically accomodates any lower order s.urface. Fig. 3 shows the five basic

decision surfaces possible with the PQNN. As the specific viji values change, the parameters

and locations of the various quadratic surfaces change.

4 Neural Network Algorithm
In the synthesis of the weights during training, we select prototypes of each class. We then

select initial quadratic decision boundaries between sets.ti prototypes. These determine our

initial complex-valued P1-to-P2 weights. We then use NN techniques to adapt these weights.

We do this by determining the most active true and false class P2 neurons and adapting their

weights (after each presentation of all training samples) uing gradient descent optimization.

This is attractive as it uses pattern recognition techniques to select the initial weights (these

are a much better choice and closer to the optimal weights than the typical choice of a random

set of weights). The update algorithm then allows the NN to combine individual quadratic

decision surfaces into the final piecewise quadratic decision surfaces used in classification.

We allow more than one prototype per class. The prototypes chosen implicitly contain the

class distribution information (the class distributions are ,iit explicitly calculated, but are used

implicitly). The initial weights are not the prototype lca~ttions in feature space (as they were

in ACNN).

5 Case Study
To demonstrate the performance of our PQNN architecture and algorithm and to allows its

decision surfaces to be visualized, we consider a 2-class, 2-feature example (using the NN in

Fig. 2). As our case study, we generated 500 samples of each of two classes. Fig. 4 shows 100 of

the samples in each class. Discrimination of these tvwo classe clearly requires nonlinear decision

boundaries. We used only two hidden layer neurons (one per class) for this example, but more
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than one per class can be used if necessary. The prototypes defined tie init i al I'-to-/IP weighth .

These were adapted in 50 iterations. Fig. 5 shows the resulting decision surface. It achieves

PC = 97.16% classification accuracy. In this case the decision surface is a second order surface

(a circle). This is a true circle and not a piecewise approximation to it (as is produced with

the ACNN and other NNs). The algorithm can produce any quadratic (second order) decision

surface (e.g., circle, elfipse, parabola, hyperbola, etc.) as well as lower order (linear) decision

surfaces (lines in two dimensional feature space and hyperplanes in higher dimensional feature

spaces). The choice is automatic in the algorithm (as it selects the appropriate non-zero real

and imaginary parts of each interconnection weight). For comparision, the ACNN was tested
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Figure 4: 2-class, 2-feature case study data Figure 5: Decision boundaries formed by the
('+'=Class 1, ''-Class 2) PQNN and ACNNii

with different numbers of P2 neurons. With 12 neurons, piecewise linear decision surfaces were-
produced and this gave a classification accuracy 96.70%. The decision surface produced is also
shown in Fig. 5. The number of P2 neurons required in the ACNN is not easily determined

except by e'ctensive tests and the minimum number is quite critical. The PQNN does not have :
this disadvantage. Other NNs can produce similar decision surfaces a t the expense of many
more P2 neurons and a larger interconnection mask. Also, selecting the number of P2 neurons

can be difficult. Clearly, the PQNN can produce exact quadratic decision surfaces (rather than :
piecewise ones) and can achieve this much more easily and automatically.

6 Discussion
A piecewise quadratic neural network (PQNN) was described and demonstrated. It achieves •

piecewise quadratic decision surfaces by the use of complex-valued interconnection weights
and intensity detectors. An optical realization architecture was described and initial results
presented.

The PQNN can be viewed as a higher order NN. However, it is very different from the j
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Giles, etal. [7] itigher order NN, witich used higlier order nieurons (Ix 2 , x, etc.) to achieve
shift-invariance at the cost of N 4 iitcrconnctions (versus our use of complex-valued weights
and square law detectors), and tile Psaltis 181 ligher order NN which used "higher order" to
refer to 3-1) optical volunie holographic intcrcomnections. The Neocognitron [9] uses man)
neu roi layers to achieve shift-invariance and distortion-invariance (a form of higher order NN).
We use a feature space neuron representation space to achieve shift and distortion-invariance
(with much fewer neurons and interconnections). Our higher order NN is intended to produce
more complicated decision surfaces (using only 2 or 3 neuron layers and simple matrix-vector
operations, rather than volume holograms or multiple neuron layers).
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Abstract

Various error sources (including analog accuracy. nonlinearities, and noise) are present in all neural nets. We
consider their effects in training and testing on two different pattern recognition neural nets. We show that the
neural nets considered allow some such effects to be included inherently in the neural net synthesis algorithm and
that the effect of the other error sources can be "tained out" by proper selection of neural net design parameters.
We consider multiclass distortion-invariant pattern recognition neural nets. Our results are applicable to analog
VLSI and optical neural nets.

1. Introduction
For the difficult pattern recognition problems considered, the neural nets we used are rviewed in Section 2

together with the error sources considered and the algorithmic and training techniques considered to overcome these
effects. Test results are included in Sections 3 and 4 and our conclusions are advanced in Section 5. We consider
good probability of correct recognition (P%) and large storage capacity (handling many classes Mof objects with
few neurons NI) for distorted objects to be necessary performance goals.

2. Pattern Recognition Neural Nets
The three layer neural net (NN) architecture of Figure I is considered with N, input P, neurons. N3 hidden layer

P3 neurons and N4 = C (the number of object classes) output P4 neurons. The N l input neurons are a feature space
representation (wedge sampled magnitude Fourier samples) to reduce dimensionality, training set size, and training
time [1]. The number of neurons N3 is selected by clustering techniques as prototype exemplars. These define
initial P1 -to-P3 weights which are then adapted in training. An important aspect of this NN is the use of a pezceptron
criterion (error) function with a parameter S (Figure 2). Selection of S achieves generalization, avoids overtraining,
and is of use when noise and error effects ar considered. Once the weights have been designed, this is a single-pass
feed-forward NN in classification (recall) with no iterations used. This adaptive clustering NN (ACNN) has been
detailed earlier [2].

P . P ERROR (V.I.P.. c)

'0CLASS I %% CLASS 2

N1 INPUT N3 HIDDEN LAYER N 4 -Cto
NEURONS NEURONS NEURONS 0 *

(FEATURES) (EXEMPLARS OR (NO. OF
PROTOTYPES) CLASSES) VIP

FIGURE 1. Three Layer ACNN FIGURE 2. Perceptron Error Function

The PI-to-P3 operations are a matrix-vector multiplication implemented by a matrix M at plane P2 operating on



an input P1 neuron vector x to yield tile P3 vector y of neurons. We can address the storage capacity of the system

using associative processor (AP) terminology where die P, inputs are keys, the 13 vector (length K) is a recollection

and the storage M is the number of key/rcollection vector pairs stored. If each x input is assumed to be associated

with a different y output at P3, then M = 2N, is the largest storage possible and this can be achieved only with a

Ho-Kashyap (IlK) algorithm to compute the weights M as detailed elsewhere [31. A robust HK algorithm [3] is of

particular use in our present accuracy, noise and error source considerations. This uses M Y XT( XT + Mo'2I_- "

as the initial set of matrix weights in the synthesis algorithm where X and Y are matrices with all x and X vectors as

their columns. When the parameter S2 is varied, this algorithm has been shown to provide best performance for

input noise with variance (Y2. We have also related this o value to the analog accuracy 2 B of a B-bit neural net as

(T = 2"8/(1 2)1(1)

as we will show. Thus, this technique has a sound theoretical basis [3].

The error sources we consider am listed in Table I with respect to the data plane Pi-to-P3 they affect- Some

entries require discussion. We consider a piecewise nonlinear error model for the input neurons (versus the ideal
linear function) and we consider minimum (non-zero) off levels for PI and P2 (due to light leakage in an optical
system, etc.). The 6 bit input neuron accuracy assumed is typical of a 1% analog system. The P2 accuracy in the

neuron weights is B = 6 bits in standard analog VLSI (the same as for the P, input neurons) but can easily be higher

(12 bits) in an optical system (since a fixed film mask with accurate encoding can be used). Advanced analog VLSI

techniques can provide 10 bit P and P2 accuracies (at an increase in cost) while 6 bits is typical of standard
fabrication methods. Error sources we found to be negligible are noted by an asterisk

3. Ho-Kashya, Storage Capacity M(N Test Results
For our H-K algorithm tests, we use N1 = N = 16 input neurons with random analog values and N3 = K = 8

binary neurons at P3. The maximum possible storage (M) for any NN is M = 2N or 32 for our case. Thus, we now
consider the performance PC% of H-K NNs that give M > N storage for various designs (a values) with different
error sources and bit accuracies present

We first show in Table 2 that use of o in our robust NN provides better PC% results. In Test 1. the standard NN
with the weights calculated with infinite accuracy data gave PC = 823% correct classifications of input data when
tested with a large a = 0.1 amount of noise added to the input neuron values during tests. When the input data was
quantized to 6 bits, noise tests gave similar 83% results. However. significantly better noise test results occurred

(Pc " 91%) when the NN weights were synthesized with - = 0.1 using our robust algorithm. Thus, our robust
algorthm provides better results in noise and with limited accuracy. Much better Pc occurs (Tests 2-4) when the
NN is tested with only limited accuracy inputs and weights (6-14 bits) without the large a = 0.1 amount of input
noise present and with a = 0.0045 (for 6 bits), a = 0.0028 (for 10 bits), etc. calculated from (1) used in synthesis of
the NN. Thus, our robust NN algorithmg ives excellent optimum results for limited input and weight accuracies with
M > N (PC% degrades as storage N increas as expected). We note (rests 2-4) that no improvement in
performance result as the number of bits of accuracy B was increased from 10 to 14 bits.

We then ran a number of NNs with different combinations of the error sources in Table I present and found that
the major error sources were the input and weight accuracies and the nonlinear input neuron curve with the
nonlinear imo neuron curve being the maor am somue (as is expected with analog input neurons). We then
analyzed various hidden layer P3 encoding schemes to determine which gave the best PC when the nonlinear input
neuron error were present. We found that L-max hidden layer neuron encoding 41 was best (in L-max encoding.
the L = 2 most active P3 neurons are found by a WTA and which two are activated defines the output P4 class
neuron activated). For M = 16 stoted vector pairs (MN = 1) we achieved excellent PC = 99.8% results and a lower

PC = 90.5% with more storage (M = 20 or MWN = 1375). We then quantified the input and weight accuracy required



for storage of M = 18 vector pairs. We found that 1 > 4 bit input accuracy and B > 8 or 10 bit weight accuracy

was sufficient. When nonlinear P1 neuron errors were present, 8 bit weights sufficed and without nonlinear P,

errors no improvement occurred for > 10 bit weights and PC% approached 100%. Thus, NNs require more weight

accuracy than input accuracy and hence optical NNs have an advantage over analog VLSI implementations.

4. ADAPTIVE CLUSTERING NN TEST RESULTS

We then tested the ACNN design in Figure I for a multiclass distortion invariant pauem recognition problem

involving 3 classes of aircraft with severe ±90* distortions in roll, pitch and yaw. The NN was trained on 1890

distorted inputs and tested on 1734 distorted inputs not present in the training set We used N1 = 16 input neurons.

N4 = C =3 output neurons (the number of object classes) and generally N3  8 hidden layer neurons. We varied the

NN parameter S (Figure 2) and the training procedure to achieve the best P when the major error sources were

present (input and weight accuracies and nonlinear input neurons). In our data, we also note the minimum distance

separation S' between the cluster centers of the N3 prototype hidden layer neurons and how this affects the

parameter S used in NN synthesis.

We first calculated the weights using a full 32-bit accuracy digital processor and then tested the NN with full

accuracy inputs and weights, with only the inputs quantized to different numbers of bits, and with only the weights

quantized Similar Pc% results occurred for both cases and for the training and test data. The S = 0.063 data in

Table 3 shows averaged results that indicate that 4 bit input and weight accuracies give little degradation in PC%. In

these data, we used S > S' = 0.030 since one might assume that a larger S forced separation would improve results.
This is not the case since the S = S'= 0.030 data in Table 3 shows better PC% results. We attribute this to the fact

that a smaller S value allows decision boundaries to be closer to data clusters and that quantizuig input data (after

the weights have been calculated with high accuracy data) does not significantly move the data from the original
clusters. Thus, we select S = S"in our NN design.

In Table 3. the performance is excellent, but we still observe a loss in P'c% as the input accuracy in testing is

reduced (P % decreases from 94.1% to 91.6% as P1 decreases from 10 to 4 bits). To obtain improved results, we

trained the neural net on quantized inputs. We also calculated new N3 prototype neuron inputs and a new S = S"

value with these quantized inputs (in other words, full traininR was done on the low accuracy neural net to be used in

ttg. Table 4 shows our results using inputs and weights with only 4 bits of accuracy. The new S = S' value was

0.070. As seen, the system with full accuracy gave P'c - 91.5%. When these calculated weights were quantized to 4

bits performance degraded by 2.8% to PC - 88.7%. However. when training was performed on the low accuracy 4

bit system we obtained even better performance (Pc - 95.3%) than in the original system. Similar trends were
obtained in all cases tested. Clearly, this NN allows NN accuracy effects to be trained out.

Similar results (Table 5) were obtained when input neuron nonlinearity (NL) eamo were considered. Tests with
this error source gave poor (Tc = 772%) results whil training the NN with this error source present resulted in
greatly improved (Oc = 93.7%) test results. Thus, nonlinear error sourc can also be trained out.

With a low accuracy NN. we expect more hidden layer neurons N3 to improve Pc% (more prototypes or data

dusters are preferable since their separation decreases with accuracy) but if N3 is made too large, local minima and

increased training time result and S' decreased. Table 6 shows that improved Pc% results as N3 is increased from 8
to 20 for a 32 biaccurate (Tvsx Crests I and 2) and for a6-bit accurate system (Tests 3 and 4) with S = S' used in
all cases. Thus, increasing the number of hidden layer neurons improves the perfornance of low accuracy NNs.



LOCATION ERROR S =0.030 S =0.063

P1  Nonlinear transfer function INPUT PC% PC%

* Pi Bias and gain spatial variation BITS

10 94.12 84.72
Pi Accuracy (6 bits) 6 94.12 84.37

5 92.73 84.26
IP Off (zero) minimum level 4 91.58 83.33
P2  Off 3 83.79 76.53

(zero) minimum level 2 63.73 53.06

P2  Accuracy (6-12 bits) 1 57.84 55.02

• P2  Nonuniform beam collimation TABLE 3: Selecting S = S'= 0.30
yields better PC with input P, quantization

Full Quantize Train on
TABLE 1: Optical System Error Sources Accuracy Full 4 Bit

Training Accuracy Inputs

TEST B-BIT PC% PC% REMARKS (32 Bits) Weights

ACCURACY STD. ROBUST to 4 Bits

_N NN PC% 91.3% 88.6% 95.1%

-.. bits 82.3 90.6 High a = 0.1 (training)

6 bits 83.0 91.5 noise PC% 91.6% 88.8% 95.4%

TEST B-BIT KN Vc% REMARKS (testing I _ ___1

ACCURACY TABLE 4: Improve PC by training
2 6 bits 1 98.5 a equal on a low accuracy NN

10-14 bits 1 100 to
3 6 bits 1.125 98.6 bit Scenario

10-14 bits 1.125 994 accuracy (Testing)
4 6 bits 1375 98.0 Test with NL input 772%

10-14 bits 1 99.5 Train with NI. input 93.7%

TABLE 2- Tests showing a improves TABLE 5: Train-Out Input Neuron

for a = 6-bit value with hig'a = 0.1 noise Nonlinearities to Improve PC%

(Test 1) and with a = 2 "1/(12 )tV2 (Tests 2-4)

S. SUMMARY
We have showed that Mwe advanced pattern recognition neural nets achieve excellent pattern recognition

performance with various analog VLSI and optical neural net enor sources. The HK neural net allows the best
performance and stage in noise and with a limited accuracy NN. WTA hidden layer neurons ame preferable when
noalinearity errors are present. We can training out limited neuron and weight accuracies and analog neuron
nonlinearities. The advanced neural nets noted and proper use of their synthesis parameters (a. S. number of hidden
neurons equal to number of data clusters) allows these attractive error source properties.

ACKNOWLEDGMENTS
The author tmks L Neiberg and S. Natarajan for obtaining, respectively, the IlK and adaptive clustering neural

net data presented.



REFERENCES
1. D. Casasent and E. Barnard, "Adaptive Clustering Neural Net for Piecewise Nonlinear DiscriminantSurfaces', UCNN'90 (International Joint Conference on Neural Networks), IEEE Catalog No.90CH2879-5, June 1990, San Diego, Vol. 1. pp. 1-423 - 1-A28.2. D. Casasent and E. Barnard, "Adaptive Clustering Optical Neural Net", Applied Optics, Vol. 29, pp

2603-2615, 10 June 1990.
3. B. Telfer and D. Casasent, "Ho-Kashyap Optical Associative Processors", Applied Optics, Vol. 29, pp.

1191-1202, 10 March 1990.
4. D. Casasent and B. Telfer, -High Capacity Pattern Recognition Associative Processors", accepted for

publication, Neural Networks.



CHAPTER 7: SIMIJATION AND OPTICAL LABORATORY NEURAL NET
RESULTS

7.1 ERROR-FREE SYSTEM TESTS

We conducted two error-free synthetic case studies and an aircraft case study comparing our

ne" PQNN to other classifiers. Our first case study was a 2-class synthetic data set with 3 input

neurons (features), with 500 samples in class I and 500 in class 2. We tested various classifiers

with different numbers of hidden layer neurons N3. Table I lists our PC results. We see that all

classifiers (except exemplars) perform well when N3 is chosen large enough (and with the proper

S value). The key rtsult is that our PQNN performs approximately best for any N3 choice and

especially for smaller N3 values.

PC()

N3  S Fvermplars ACNN Gaus'ian BP PQNN

2 0.25179 56.2 62.8 99.2 80.3 99.9

3 0.13190 66.5 62.4 95.1 80.7 96.9

4 0.04171 60.1 80.6 95.4 99.6 98.5

5 0.04171 68.9 80.8 97.8 99.5 98.8

6 0.010,12 68.4 93.4 97.8 99.8 99.5

7 0.01042 66.3 93.3 97.8 99.5 99.1

8 0.01042 69.6 96.5 98.1 99.6 98.7

9 0.01042 77.3 98.8 97.9 99.7 98.6

10 0.00502 80.5 98.9 98.3 99.5 99.2

Table I: PC vs. N3 (2 Class Case Study)

Figure 1 shows the original 2 class data. Figure 2 shows the different decision surfaces

produced with the different classifiers with N3 = 2. Clearly, the PQNN performs best (the Gaussian

classifier performs similarly, since the data is Gaussian distributed).

Table 2 shows similar results for our second synthetic data set. This involved a 4-class problem

(with 5000 total samples: 1020, 135, 1439 and 2406 samples in each class). We use N, = 3 input

neurons (two features). The PQNN performs best for any N3 and its advantage in PC is larger for

smaller N3. Figure 3 .hows the original data and Figure 4 shows the decision boundaries produced

with N3 = 5 hidden layer neurons.
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Figure 1: 2 Class Case Study Data

I PC M%

N3  S Exemplars ACNN Gaussian BP PQNN

4 0.04503 43.1 74.9 85.9 92.4 96.8

5 0.04503 51.5 74.7 85.7 94.6 95.2

6 0.03154 62.2 75.0 83.5 94.8 96.4

7 0.02380 67.8 75.7 91.0 94.5 95.2

8 0.02380 69.4 94.2 91.3 96.0 96.1

9 0.00935 69.9 94.3 92.0 94.8 96.7

10 0.00935 69.8 94.4 90.6 95.2 96.8

11 0.00935 72.5 94.4 88.4 95.6 94.9

12 0.00032 71.9 94.8 91.5 95.8 95.3

13 0.00032 72.3 93.9 93.7 95.4 96.9

14 0.00032 73.8 95.0 93.6 95.4 97.0

15 0.00032 74.3 93.0 94.0 95.0 96.6

Table 2: PC vs. N3 (4 Class Case Study)
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Figure 3: 4 Class Case Study Data

We also considered an aircraft database of 128x128 binary synthetic images of three aircraft
(F-4, F- 104, and DC- 10). 630 images of each aircraft, representing different azimuth and elevation
views, were used as training images. The azimuth angles range from -85' to +850 in 5' increments,
while the elevation angles span 00 to 90' in 50 increments. There are 578 test set images per
aircraft type at 2.5' intermediate angles. The features used are invariant to image translation. As
inputs to the classifiers, we use 15 wedge-sampled Fourier transform features. The wedge samples
are normalized so that they provide scale and shift invariance. The PC performance versus N3

showed that the PQNN is again best.
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7.2 OPTICAL LABORATORY SYSTEM NEURAL NET TESTS

We performed optical laboratory tests on our two-class synthetic and three-class aircraft case
studies and compared results to those obtained by simulations. In all cases, we consider only real
weights. This completes Tasks 7 and 8 concerning the ACNN and PQNN. Table I lists our results.

For these 2 case studies, we show the optical laboratory data (Test 1) and that they agree with the
simulation results when all errors were present and trained out (assuming 5-bit LCTV input neuron

accuracy). Thus, the validity of our simulator and our error source models are verified, as is our
training out algorithm. If 6-bit input neuron accuracy were available, better PC would result as

shown in Test 3 versus Test 4 (57.2% versus 56.8% and 90.5% versus 88.7%). For comparison,
we list the PC obtained with an ideal system (Test 2) and see that it is not significantly better than
the results we obtained. Thus, our present neural net is nearly the best possible and is quite useful.

Our training out algorithm clearly provides much better PC results.

2 Class 3 Class Aircraft Case

Test Aircraft Study
Case
Study Test Train

1 Optical lab 56.5 88.3 86.1

2 Ideal (no errors) 62.8 84.7 83.6

3 All errors present 57.2 90.5 91.1
Trained out (6-bit input neurons)

4 All errors present. 56.8 88.7 86.4
Trained out (5-bit input neurons)

Table 3: PC results for the PQNN with real weights for several case studies using the optical
laboratory system, an ideal system and systems with different levels of input accuracy using

our training output algorithm.

7.3 OPTICAL LABORATORY HIGH CAPACITY HK NN TESTS

We used our 1:1 Ho-Kashyap neural net to demonstrate its high storage and its superior
performance. The system parameters are given in Table 4. The error sources considered are given

in Table 5. We trained out all errors except errors 8 and 9. We corrected for errors 5 and 6. No
input noise was present. The asyn control parameter used (Osyn = 0.00025) corresponded to 10-bit

accuracy.

Simulations predicted a recall accuracy of P'c = 98.17% (average accuracy of 100 random sets
of input data) for a neural net with the parameters as listed in Tables 4 and 5. For the exact neural



net run in the optical lab with the specific M = 24 input vectors used, simulations (with only one
run) gave P'c = 100%. We ran the system in the laboratory and achieved P'c = 23/24 96%. This
corresponds to only one error in the 24 output vectors and the single output vector that was
incorrect had only one of its output elements wrong. We attribute this error to the space-variant
beam profile which is only approximately modeled by a centered Gaussian. This is excellent
storage performance density (more than any other neural net) and our simulations and optical lab
results match well and the use of our training out algorithm is verified.

PARAMETER VALUE DESCRIPTION

N 16 Input vector dimension (unipolar elements)

K 8 Output vector elements (bipolar elements)

M 24 (M/N = 1.5) Vector pairs stored

L 3 L-max output vector encoding parameter

0Y1 0.0 No input noise was added to key vectors

Table 4: AP system parameters

Error Location Error Description Parameter Significant

Value Error?

1 P1  Nonlinear input device characteristics YES

2 P 1  Input accuracy 5 bits YES

3 P 1  Off (zero) minimum level 0.0006 NO

4 P2  Mask accuracy 8 bits YES

5 P2  Mask nonlinear device characteristics YES

6 P2  Gaussian beam taper 15% YES

7 P2  On (1.0) maximum level 0.931 YES

8 P3  Detector precision 10 bits YES

9 P3  Detector temporal shot noise variance 10-7  NO

Table 5: Optical system error sources summary


